Problem 1
For the ideal \(I=\langle x^2-xy,\ xy-1 \rangle\) in \(\mathbb{Q}[x,y]\), find a Gröbner basis in the lex
order without using a computer algebra system.
Solution
Let \(g_1 = x^2-xy\), \(g_2 = xy-1\), and \(G_0 = (g_1, g_2)\). We compute \(S(g_1,g_2)=y(x^2-xy)-x(xy-1)=-xy^2+x\). Set \(g_3 = \overline{-xy^2+x}^{G_0}=x-y\). Let \(G_1 = (g_1,g_2,g_3)\).
Now, we compute:
- \(S(g_1,g_2)^{G_1}=\overline{-xy^2+x}^{G_1}=0\)
- \(S(g_1,g_3)^{G_1}=\overline{0}^{G_1}=0\)
- \(S(g_2,g_3)^{G_1}=\overline{y^2 - 1}^{G_1}= y^2 - 1\)
Set \(g_4=y^2-1\) and set \(G_2= (g_1,g_2,g_3,g_4)\). We know in advance that \(S(g_1,g_2)^{G_2}=S(g_1,g_3)^{G_2}=S(g_2,g_3)^{G_2}=0\) since this is the purpose of \(g_4\). We compute:
- \(S(g_1,g_4)^{G_2}=\overline{x^2 - xy^3}^{G_2}=0\)
- \(S(g_2,g_4)^{G_2}=\overline{x-y}^{G_2}=0\)
- \(S(g_3,g_4)^{G_2}=\overline{x - y^3}^{G_2}=0\)
Thus a Gröbner basis is \[\{ x^2-xy,\ xy-1,\ x-y,\ y^2-1 \}.\]