Problem 1
Let \(M_2(\mathbb{C})\) be the set of \(2 \times 2\) complex matrices viewed as a real vector space. Let \(\Psi : M_2(\mathbb{C}) \to M_2(\mathbb{C})\) be the function that takes a matrix to its conjugate transpose.
- Prove that \(\Psi\) is \(\mathbb{R}\)-linear.
- Find the eigenvalues of \(\Psi\).
- Find bases for the eigenspaces of \(\Psi\).
Solution
If \(A,B \in M_2(\mathbb{C})\) and \(\lambda \in \mathbb{R}\), then \[\Psi(\lambda A + B) = (\lambda A + B)^\ast = \lambda A^\ast + B^\ast = \lambda \Psi(A) + \Psi(B).\] Thus \(\Psi\) is linear. (This can also be directly checked with explicit matrices.)
Since \(\Psi(\Psi(A))=(A^\ast)^\ast=A\), we see that \(\Psi^{\circ 2}\) is the identity. Thus the minimal polynomial of \(\Psi\) divides \(x^2-1\). Thus the eigenvalues can only be \(\pm 1\). The identity matrix \(I_2\) has eigenvalue \(1\) and \(iI_2\) has eigenvalue \(-1\), so they both occur.
Explicitly, for \(a,\ldots, h \in \mathbb{R}\), we have \[\Psi : \begin{pmatrix} a+bi & c+di \\ e+fi & g+hi \end{pmatrix} \mapsto \begin{pmatrix} a-bi & e-fi \\ c-di & g-hi \end{pmatrix}.\] Solving \(\Psi(A)=A\) we have a basis for \(E_1\): \[ \begin{pmatrix}1&0\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&1\end{pmatrix}, \begin{pmatrix}0&1\\1&0\end{pmatrix}, \begin{pmatrix}0&-i\\i&0\end{pmatrix}.\] Solving \(\Psi(A)=-A\) we have a basis for \(E_{-1}\): \[ \begin{pmatrix}i&0\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&i\end{pmatrix}, \begin{pmatrix}0&1\\-1&0\end{pmatrix}, \begin{pmatrix}0&i\\i&0\end{pmatrix}.\]
(You can see these are bases without redoing the computation. They are evidentally linearly independent, and spanning can be checked as follows: \[8 = \operatorname{dim}_{\mathbb{R}} M_2(\mathbb{C}) \ge \operatorname{dim}_{\mathbb{R}} E_1 + \operatorname{dim}_{\mathbb{R}} E_{-1} \ge 4+4=8.)\]