Problem 1. Find the reduced row echelon form for the matrix

$$
\begin{pmatrix} 2 & 1 & 6 & 2 \ 4 & 1 & 0 & 2 \ 3 & 1 & 2 & 0 \end{pmatrix}.
$$

Solution:

$$
\begin{pmatrix}\n2 & 1 & 6 & 2 \\
4 & 1 & 0 & 2 \\
3 & 1 & 2 & 0\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n2 & 1 & 6 & 2 \\
0 & -1 & -12 & -2 \\
3 & 1 & 2 & 0\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n2 & 1 & 6 & 2 \\
0 & -1 & -12 & -2 \\
0 & -\frac{1}{2} & -7 & -3\n\end{pmatrix}
$$
\n
$$
\sim\n\begin{pmatrix}\n2 & 1 & 6 & 2 \\
0 & -1 & -12 & -2 \\
0 & 0 & -1 & -2\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n2 & 1 & 6 & 2 \\
0 & 1 & 12 & 2 \\
0 & 0 & 1 & 2\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n2 & 0 & -6 & 0 \\
0 & 1 & 12 & 2 \\
0 & 0 & 1 & 2\n\end{pmatrix}
$$
\n
$$
\sim\n\begin{pmatrix}\n2 & 0 & -6 & 0 \\
0 & 1 & 0 & -22 \\
0 & 0 & 1 & 2\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n2 & 0 & 0 & 12 \\
0 & 1 & 0 & -22 \\
0 & 0 & 1 & 2\n\end{pmatrix}\n\sim\n\begin{pmatrix}\n1 & 0 & 0 & 6 \\
0 & 1 & 0 & -22 \\
0 & 0 & 1 & 2\n\end{pmatrix}
$$

Problem 2. Describe all solutions of $A\mathbf{x} = \mathbf{b}$ in parametric vector form, where

$$
A = \begin{pmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 1 & 4 & 0 & 5 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.
$$

Solution: Observe that the matrix A is already in reduced row echelon form. If $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$, then the basic variables are x_1, x_2, x_4 and the free variables are x_3, x_5 . Thus, the parametric vector form of the solution set is

$$
\mathbf{x} = \begin{pmatrix} 7 \\ 8 \\ 0 \\ 9 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ -4 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -3 \\ -5 \\ 0 \\ -6 \\ 1 \end{pmatrix}.
$$

Problem 3. Determine if the vectors

$$
\begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \text{ and } \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}.
$$

are linearly independent.

Solution: Let A be the matrix with these vectors as columns. The vectors are linearly independent if and only if the homogeneous matrix equation $A\mathbf{x} = \mathbf{0}$ has no non-trivial solutions. By Gaussian elimination, we obtain

$$
\begin{pmatrix} 5 & 1 & -1 \ -2 & 2 & 2 \ 1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \ -2 & 2 & 2 \ 5 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \ 0 & 6 & 4 \ 0 & -9 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \ 0 & 6 & 4 \ 0 & 0 & 0 \end{pmatrix}.
$$

This is in echelon form and not every column has a pivot. Therefore there must be a non-trivial solution. Thus the vectors are linearly dependent.

(Note that $\mathbf{v}_1 - 2\mathbf{v}_2 + 3\mathbf{v}_3 = 0$ is an explicit solution, but we do not need find this to solve the problem.)

Problem 4. $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$ and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find the image under T of $\mathbf{u} =$ $\sqrt{5}$ −2 \setminus . Solution:

$$
T(\mathbf{u}) = A\mathbf{u} = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \cdot 5 + 3 \cdot (-2) \\ 4 \cdot 5 + 1 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \end{pmatrix}
$$

Problem 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation where $T(\mathbf{e}_1) = \begin{pmatrix} 3 & 1 \ 1 & 1 \end{pmatrix}$ 1) and $T(\mathbf{e}_2) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 1 \setminus . Find **x** such that $T(\mathbf{x}) = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ 3 \setminus .

Solution: We need to solve the matrix equation $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \mathbf{x} =$ (7) 3 \setminus . We form the augmented matrix and use Gaussian elimination:

$$
\begin{pmatrix} 3 & 2 & 7 \ 1 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 3 \ 3 & 2 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 3 \ 0 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \end{pmatrix}.
$$

We conclude that $\mathbf{x} =$ $\sqrt{1}$ 2 \setminus works. Determine whether each of the following statements are true or false. No justification is necessary.

Problem 6. An inconsistent system has more than one solution.

Solution: False. An inconsistent system has no solutions.

Problem 7. The echelon form of a matrix is unique.

Solution: False. Consider $\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which are row equivalent and both in echelon form. (The reduced echelon form is unique.)

Problem 8. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some **b** in \mathbb{R}^n .

Solution: True. If the columns of A do not span \mathbb{R}^m , then there exists $\mathbf{b} \in \mathbb{R}^m$ that is not a linear combination of the columns of A. Thus $A\mathbf{x} = \mathbf{b}$ has no solutions.

Problem 9. If **x** is a nontrivial solution of $A\mathbf{x} = 0$, then every entry in **x** is nonzero.

Solution: False. For the matrix $A =$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, the vector **x** = $\sqrt{1}$ 0 \setminus is a nontrivial solution with a zero entry.

Problem 10. Any set containing the zero vector is linearly dependent.

Solution: True. Given $0, v_1, \ldots, v_n$, for some non-negative n, we always have the nontrivial relation

$$
10 + 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_n.
$$

Problem 11. Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span \mathbb{R}^n . Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation such that $T(\mathbf{v}_i) = 0$ for all i from $1, \ldots, p$. Prove that $T(\mathbf{x}) = 0$ for every vector $\mathbf{x} \in \mathbb{R}^n$.

Solution: Let $\mathbf{x} \in \mathbb{R}^n$ be arbitrary. Since $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span \mathbb{R}^n , there must exist weights c_1, \ldots, c_p in \mathbb{R} such that

$$
\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p.
$$

Now by the superposition principle, we have

$$
T(\mathbf{x}) = T(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p)
$$

= $c_1T(\mathbf{v}_1) + \dots + c_pT(\mathbf{v}_p)$
= $0 + \dots + 0$
= 0

as desired.