Problem A. Let A be an invertible matrix. Prove that $det(A^{-1}) = det(A)^{-1}$.

Solution.

We have $A^{-1}A = I_n$. Thus det $(A^{-1}A) = det(I_n)$. Note that det $(I_n) = 1$. By the multiplicativity of the determinant, we have det (A^{-1}) det(A) = 1. Solving, we obtain det $(A^{-1}) = det(A)^{-1}$ as desired.

Problem B. Let A be an $n \times n$ matrix and let r be a scalar. Prove that $det(rA) = r^n det(A)$.

Solution.

Observe that $rA = rI_nA$. Since rI_n is a diagonal matrix with *n* entries of *r* along the diagonal, we have $\det(rI_n) = r^n$. Now $\det(rA) = \det(rI_n) \det(A) = r^n \det(A)$ as desired.

<u>Alternatively</u>: We define a series of matrices inductively as follows. Let $B_0 = A$. For $1 \le i \le n$, let B_i be the matrix B_{i-1} with the *i*th row multiplied by *r*. Thus, $rA = B_n$. By Theorem 3.3(c),

$$\det(rA) = \det(B_n) = r \det(B_{n-1}) = r^2 \det(B_{n-2}) = \dots = r^n \det(B_0) = r^n \det(A).$$