Assignment 4

Problem A. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that $(AB)^T = B^T A^T$.

Solution.

By the definition of transpose, we have $(C^T)_{ij} = C_{ji}$ for any matrix C with appropriate indices i, j. Thus, for every $1 \le i \le p$ and $1 \le j \le m$, we have

$$\left[(AB)^T \right]_{ij} = (AB)_{ji} = \sum_{k=1}^n A_{jk} B_{ki} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj} = \left(B^T A^T \right)_{ij}.$$

Since all entries agree, the two matrices agree.

Problem B. Prove that the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if $ad - bc \neq 0$.

Solution.

First, suppose $ad - bc \neq 0$ and let $B = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. We check that $AB = I_2$ and $BA = I_2$, so B is the inverse of A. Thus A is invertible.

Now suppose ad - bc = 0. Observe that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -b \\ a \end{pmatrix} = \begin{pmatrix} 0 \\ ad - bc \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

So $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution unless a = b = 0. If a = b = 0, then

$$\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \begin{pmatrix} -d \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and again there is a non-trivial solution unless c = d = 0. If a = b = c = d = 0, then $A\mathbf{x} = \mathbf{0}$ for <u>all</u> \mathbf{x} . In all these cases, $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution. Thus A is not invertible by (the contrapositive of) Theorem 2.5 in the text.