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Here we discuss the theory of symmetric functions, with the particular
goal of describing representations of the symmetric groups and general linear
groups. The irreducible representations of the symmetric group Sn are the
Specht modules Vλ, which are parametrized by the partitions λ of weight n.
The irreducible polynomial representations of the general linear group GL(V)
are precisely the (images of the) Schur functors Sλ(V ) where λ is partition
of length ℓ(λ) ≤ dim(V ). Both are best understood as being in bijection
with Schur functions {sλ}, which form an orthonormal basis for the ring of
symmetric functions.

These notes are not self-contained. Many proofs will be sketched or left
as a reference. This is not because the proofs are hard (the beauty of this
subject is that they are often very slick!), but that the theory is too rich to
properly explore in only a few weeks. Much of this material is drawn from
[FH91, §4,6,A], [EGH+11, §5.12–5.19], [Mac95, §I], and [Sta99, §7].

1 Partitions

Recall that a partition λ is a sequence of non-strictly decreasing non-negative
integers λ1 ≥ λ2 ≥ · · · that is eventually 0. Some standard terminology:

• The non-zero λi are the parts of λ.

• The number ℓ(λ) of parts is the length of λ.

• The sum |λ| =
∑

i≥0 λi is the weight of λ.

• A “partition of n” is a partition of weight n.
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• λ ⊢ n means λ is a partition of n.

• The number mi(λ) of parts equal to i is the multiplicity of i in λ.

• Partitions can be written λ1 + λ2 + · · ·+ λr.

• We may use the shorthand λ = (1m12m2 · · · rmr).

• λ+ µ is the partition (λ1 + µ1, . . .).

• λ ⊆ µ means λi ≤ µi for all i ≥ 1.

• The dominance ordering λ ≤ µ means
∑i

j=1 λj ≤
∑i

j=1 µj for all i ≥ 1.

Partitions are often drawn as Young diagrams. This is just a series of
empty boxes where each row contains λi boxes. We use English notation
where λ1 is the top row. There are some differing conventions between dif-
ferent areas of math, so read any source carefully.

Given a partition λ, the conjugate partition is the partition λ† obtained
by reflecting the Young diagram in the downwards-right diagonal line. More
explicitly, λ†i is the number of parts such that λj ≥ i.

Example 1.1. The partitions of 4 are as follows:

4 3+1 2+2 2+1+1 1+1+1+1

Example 1.2. Let λ = (4, 4, 2, 2, 2, 1). We may also write λ as 4 + 4 + 2 +
2 + 2 + 1 or 112342. We have parts λ1 = 4, λ2 = 4, λ3 = 2, λ4 = 2, λ5 = 2,
and λ6 = 1. We have length ℓ(λ) = 6, weight |λ| = 15, and multiplicities
m1(λ) = 1, m2(λ) = 3, m3(λ) = 0, and m4(λ) = 2. The Young tableau is

.
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The conjugate partition λ† is (6, 5, 2, 2).

Recall that every permutation σ ∈ Sn can be written as a product of
disjoint cycles, which is unique up to reordering of the cycles. Counting
the cycles of length 1, we see that the orders of the constituent cycles give
a partition λ ⊢ n. For example (1 4 3)(2 8)(6 7) ∈ S9 has cycle type
3 + 2 + 2 + 1 + 1. The following is standard in most group theory texts:

Proposition 1.3. Two permutations in Sn are conjugate if and only if they
have the same cycle type. In particular, the conjugacy classes of Sn are in
canonical bijective correspondence with partitions of n.

For every partition λ, we define the integers

ϵλ = (−1)|λ|−ℓ(λ).

and
zλ =

∏
i≥1

imimi!

where mi = mi(λ) denotes the multiplicities,

Exercise 1.4. Prove that, if σ ∈ Sn has cycle type λ, then sgn(σ) = ϵλ.

Exercise 1.5. Prove that, if σ ∈ Sn has cycle type λ, then the centralizer
ZSn(σ) has order zλ. Equivalently, the number of elements of Sn with cycle
type λ is n!/zλ.

2 Symmetric Polynomials

There is a natural left action of the symmetric group Sn on the ring of
polynomials R = Z[x1, . . . , xn] by permuting the variables. More precisely,
there is a unique ring automorphism of R defined by xi 7→ xσ(i) for each
variable xi and each permutation σ ∈ Sn. Alternatively, if σ ∈ Sn, the we
have

(σ · f)(a1, . . . , an) = f
(
aσ(1), . . . , aσ(n)

)
for f ∈ R and a1, . . . , an ∈ Z.

Definition 2.1. A polynomial f ∈ Z[x1, . . . , xn] is symmetric if σ ·f = f for
all σ ∈ Σ. We denote by SFn the set of symmetric polynomials Z[x1, . . . , xn]

Sn

in n variables.
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The set SFn forms a graded ring

SFn =
⊕
d≥0

SFd
n

where each SFd
n = Z[x1, . . . , xn]

Sn

(d) is the subgroup of homogeneous symmetric
polynomials of degree d.

Given a tuple α = (α1, . . . , αn) ∈ Nn we use the shorthand

xα = xα1
1 · · ·xαn

n

to denote monomials in Z[x1, . . . , xn].
Given a partition λ ⊢ d with length ℓ(λ) ≤ n, the monomial symmetric

polynomial associated to λ is given by

mλ :=
∑
α

xα

where (α1, . . . , αn) ranges over all distinct permutations of (λ1, . . . , λn).

Exercise 2.2. Prove that zλmλ =
∑
σ∈Sn

xσ(λ) for all λ of length ℓ(λ) ≤ n.

Example 2.3. If n = 3, then we have

m∅ = 1

m1 = x1 + x2 + x3

m2 = x2
1 + x2

2 + x2
3

m11 = x1x2 + x1x3 + x2x3

m111 = x1x2x3

m14 = x1x
4
2 + x4

1x2 + x1x
4
3 + x4

1x3 + x2x
4
3 + x4

2x3.

Importantly, we have the following:

Proposition 2.4. Monomial symmetric polynomials form a basis for SFn.
Specifically,

SFd
n = spanZ{mλ | λ ⊢ d, ℓ(λ) ≤ n}.

Proof. The partitions of length at most n are a system of distinct represen-
tatives for the Sn-orbits of Nn. The monomials in mλ are precisely those
of the orbit of λ. The coefficient of every monomial in mλ is either 0 or 1
and every possible monomial occurs in exactly one mλ. If f is a symmetric
polynomial, then the coefficient of a monomial xα must be the same as xσ(α)

for every σ ∈ Sn.
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There are several notable additional families of symmetric polynomials
which we define now.

Definition 2.5. For positive integers d, we define the elementary symmetric
polynomial ed of degree d as

ed = m1d =
∑

1≤i1<i2<···<id≤n

xi1xi2 · · ·xid ,

the complete homogeneous symmetric polynomial hd of degree d as

hd =
∑
λ⊢d

mλ =
∑

1≤i1≤i2≤···≤id≤n

xi1xi2 · · ·xid ,

and the power sum symmetric polynomial pd of degree d as

pd = md =
∑

1≤i≤n

xd
i .

By convention, e0 = h0 = p0 = 1.

Remark 2.6. The conventions for e0 and h0 are uncontroversial, but many
references leave p0 undefined. Indeed, there are good reasons to instead define
p0 = n, but this does not extend to the ring of symmetric functions discussed
below.

Example 2.7. If n = 3, then we have

e1 = h1 = p1 = x1 + x2 + x3

e2 = x1x2 + x1x3 + x2x3

e3 = x1x2x3

e4 = 0

h2 = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3

h3 = x3
1 + · · ·+ x2

1x2 + · · ·+ x1x2x3

p2 = x2
1 + x2

2 + x2
3

p3 = x3
1 + x3

2 + x3
3

It is worth mentioning right away (but whose proof we will defer) some
fundamental results. First, we have Newton’s identities :

ded =
d∑

i=1

(−1)i−1pied−i,

Last Revised: March 10, 2023 5 of 25



MATH 742 Sn and GLn Spring 2023

and the fundamental relation

0 =
d∑

i=0

(−1)ieihd−i,

which hold for all positive integers d. These allow one to recursively compute
pi’s and hi’s in terms of ei’s (and vice versa).

We also have the Fundamental Theorem of Symmetric Polynomials which
states that e1, . . . , en are algebraically independent generators of the ring SFn.
In fact, combining this with the above relations, we have

Z[x1, . . . , xn]
Sn = Z[e1, . . . , en]

Z[x1, . . . , xn]
Sn = Z[h1, . . . , hn]

Q[x1, . . . , xn]
Sn = Q[p1, . . . , pn]

where rational coefficients are necessary for the last equality. The proofs of
these equalities are not very hard, but we defer them for the moment as they
are consequences of more general facts.

2.1 Alternating and Schur Polynomials

Let ϵ : Sn → {±1} be the sign homomorphism and let An = ker(ϵ) be the
alternating group on n letters.

Definition 2.8. A polynomial f ∈ Z[x1, . . . , xn] is alternating if σ·f = ϵ(σ)f
for all σ ∈ Sn. Given an element α ∈ Nn, define the alternant of α as

aα =
∑
σ∈Sn

ϵ(σ)xσ(α),

which is an alternating polynomial.

Note that aα = 0 if and only if the entries of α are not distinct. We
also see that every alternating polynomial is a linear combination of aλ’s for
partitions λ where the parts λi are all distinct. Observe that all parts of λ
are distinct if and only if δ ⊆ λ where δ = (n − 1, n − 2, . . . , 1, 0). We have
the following:

Lemma 2.9. The set
{aλ | ℓ(λ) ≤ n, δ ⊆ λ}

is a basis for the group of alternating polynomials.
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Example 2.10. The Vandermonde polynomial ∆ ∈ Z[x1, . . . , xn] is defined
via

∆ =
∏

1≤i<j≤n

(xi − xj).

Note that (i j) ·∆ = −∆ for all i ̸= j. We conclude that σ(∆) = sgn(σ) for
all σ ∈ Sn. Thus ∆ is alternating. Observe that ∆ = aδ.

Lemma 2.11. Every alternating polynomial f has the form g∆ where g is
a symmetric polynomial.

Proof. It suffices to show that (xi − xj) divides f for all i ̸= j. Indeed,
suppose cαx

α is a monomial in f and write xα = xu
i x

v
jx

β where xi and xj

do not divide xβ. Since f is alternating, −cαx
v
i x

u
jx

β also must appear in f .
Thus cα(x

u
i x

v
j − xv

i x
u
j )x

β occurs in f . Each of these divisible by (xi − xj) as
desired.

The following definition now makes sense:

Definition 2.12. For a partition λ of length ≤ n, the Schur polynomial is
the symmetric polynomial sλ = aλ+δ/aδ.

The alternants {aλ+δ} are a basis for the alternating polynomials analo-
gously to the monomial symmetric polynomials {mλ} being a basis for the
symmetric polynomials. Since we have aλ+δ = sλaδ, the Schur polynomials as
“monomial alternating polynomials” except we’ve divided out the alternating
part so that they are symmetric.

In particular, we have the following:

Proposition 2.13. The set of Schur polynomials

{sλ | λ ⊢ d, ℓ(λ) ≤ n}

are a basis for SFd
n.

The Kostka numbers Kλµ are the entries of the change of basis matrix
between the monomial basis and the Schur basis. Specifically, they are non-
negative integers such that

sλ =
∑
µ⊢|λ|
ℓ(µ)≤n

Kλµmµ

for all partitions λ, µ. The Kostka numbers do not depend on the number of
variables n in the ambient polynomial ring (we do not prove this here).
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Example 2.14. For n ≥ 4, we have the following change of basis matrix:
s1111
s211
s22
s31
s4

 =


1 0 0 0 0
3 1 0 0 0
2 1 1 0 0
3 2 1 1 0
1 1 1 1 1



m1111

m211

m22

m31

m4


Thus, for example K(31)(1111) = 3.

Exercise 2.15. Prove that s(d) = hd and s(1d) = ed.

We will not need the following later, but it is of general interest:

Theorem 2.16 (Fundamental Theorem of Alternating Polynomials). The
ring Z[x1, . . . , xn]

An is a free SFn-module with basis {1,∆}. In other words,
every An-invariant polynomial f can be written uniquely as f = p+∆q where
p, q are symmetric.

Remark 2.17. If V is an n-dimensional complex linear representation of G,
then we have a natural action of G on the polynomial ring S = C[x1, . . . , xn]
by viewing it as the symmetric algebra S(V ∨). A famous theorem of Hochster-
Roberts proves that the invariant ring SG = C[x1, . . . , xn]

G is a Cohen-
Macaulay ring: there exists a polynomial subring R = C[f1, . . . , fn] such that
SG is a free R-module. The “Fundamental Theorem of Alternating Polyno-
mials” can be seen as a very special case of this fact (where the subring and
basis have particular interpretations).

2.2 Symmetric and Exterior Powers

We now see some of the connections of symmetric functions and representa-
tion theory:

Proposition 2.18. Suppose V is an n-dimensional vector space and φ ∈
End(V ) has eigenvalues α1, . . . , αn. Then the natural action of φ on the
exterior power ΛdV has trace

tr
(
Λdφ

)
= ed(α1, . . . , αn)

and the natural action of φ on the symmetric power SdV has trace

tr
(
Sdφ

)
= hd(α1, . . . , αn).
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Proof. It suffices to work over an algebraically closed field k. We prove the
statement for ΛdV since the argument for Sd is very similar.

First, we assume that φ is diagonalizable with eigenvectors v1, . . . , vn
corresponding to eigenvalues α1, . . . , αn. Now, an eigenbasis for ΛdV is given
by

{vi1 ∧ vi2 ∧ · · · ∧ vid | 1 ≤ i1 < i2 < · · · < id ≤ n} .

The corresponding eigenvalues of Λdφ are therefore

{αi1αi2 · · ·αid | 1 ≤ i1 < i2 < · · · < id ≤ n} .

The trace of Λdϕ is just the sum of the eigenvalues, which is ed(α1, . . . , αn)
as desired.

Now we consider the case where φ is not diagonalizable. In this case φ
has a Jordan canonical form. Thus, we have a basis v1, . . . , vn for V such that
φ is represented by D + N where D is a diagonal matrix and N is a lower
triangular matrix. Observe that N(vi) is a linear combination of vi+1, . . . , vn.

Define a total ordering on Nn where (a1, . . . , an) < (b1, . . . , bn) if ai < bi
for the minimal i on which ai ̸= bi. We now observe that

(D +N)(vi1 ∧ · · · ∧ vid) = D(vi1 ∧ · · · ∧ vid) + higher terms

where the “higher terms” are scalar multiples of vj1 ∧ · · · ∧ vjd where we have
(j1, . . . , jd) > (i1, . . . , id). Thus, appropriately ordered, our basis for ΛdV
also represents ΛdV as a lower-triangular matrix. The trace only depends on
the diagonal entries so the result follows from the diagonalizable case.

Another way of understanding the previous proposition is that ΛdV and
SdV are representations of GL(V ) with corresponding characters ed and hd,
respectively. We will see that there is a class of symmetric polynomials
called Schur polynomials which are precisely the characters of the irreducible
polynomial representations of GL(V ).

3 The Ring of Symmetric Functions

Many of the relations between various special symmetric polynomials are
basically independent of the number n of variables x1, . . . , xn in the ambient
polynomial ring. The ring of symmetric functions is a standard object in
algebraic combinatorics that facilitates this. Several equivalent constructions
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exist, but we will follow the construction from [Sta99], which is fairly down
to earth.

Let Z[[{xn}n∈N>0 ]] be the ring of formal power series in countably many
variables. Recall that this means that we allow only finitely many xi in each
monomial, but each element may be a linear combination of infinitely many
monomials and there may be no upper bound on the subscripts i occurring
among the xi’s in each monomial. For a non-negative integer d, the subgroup
Z[[{xn}n∈N>0 ]](d) consists of those elements whose monomials all have degree
exactly d (in other words, exactly d variables xi in each monomial, counting
multiplicities).

Let SN>0 be the symmetric group on N>0; in other words, the group of all
bijections N>0 → N>0. There is a natural action of SN>0 on Z[[{xn}n∈N>0 ]]
by permuting variables that preserves the degree. A homogeneous symmetric
function of degree d is an element f ∈ Z[[{xn}n∈N>0 ]]

SN
(d). Let SFd be the

subgroup of homogeneous symmetric functions of degree d.
We define the ring of symmetric functions as the (internal) direct sum

SF =
⊕
d≥0

SFd,

which is a graded subring of Z[[{xn}n∈N>0 ]].

Remark 3.1. Note that “symmetric function” is standard terminology, but
it’s not a great name since it’s not really clear what it is a function of.
Moreover, the term symmetric function is often used in the finite variable
case to discuss “ordinary” functions like ex+y, which are invariant under
symmetries like x ↔ y.

There are canonical surjective graded ring homomorphisms ρn : SF →
SFn, which are defined via

ρn(f)(x1, . . . , xn) = f(x1, . . . , xn, 0, 0, · · · ).

Note that convergence is not an issue since all but finitely many monomials
will evaluate as zero.

Remark 3.2. One can equivalently define the ring of symmetric functions as
an inverse limit

SF = lim←−
n

SFn

in the category of graded rings (see [Mac95]). (Warning: it is not the inverse
limit in ordinary rings.) The ρn above are precisely the canonical projections
obtained from this construction.
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We define the monomial symmetric function associated to λ given by

mλ :=
∑
α

xα

where (α1, . . .) ∈ NN>0 ranges over all distinct permutations of (λ1, . . .). Ob-
serve that the set {mλ} is a basis for SF.

We can now define the elementary symmetric functions

ed = m1d ,

the complete homogeneous symmetric functions

hd =
∑
λ⊢d

mλ,

and the power sum symmetric functions

pd = md.

The overloading of mλ, ed, hd, and pd to mean different objects in each
SFn is seen to be mostly harmless in view of the fact that they are precisely
the images of the corresponding objects in SF under the maps to ρn.

We may also define the Schur symmetric functions sλ via

sλ =
∑
µ

Kλµmµ

by taking advantage of the fact that the Kostka numbers do not depend on
the number of variables in the given polynomial ring.

3.1 Relations and Identities

Proposition 3.3.
d∑

i=0

(−1)ieihd−i = 0 for every d ≥ 1.

Proof. Consider the generating functions

E(t) =
∑
r≥0

ert
r and H(t) =

∑
r≥0

hrt
r
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as elements in SF[[t]]. We see that

E(t)

=1 + (x1 + x2 + · · · )t+ (x1x2 + x1x3 + · · · )t2

=
∏
i≥1

(1 + xit)

in the larger ring Z[[x1, . . .]][[t]]. Similarly, recalling the geometric series
formula, we have

H(t) =
∏
i≥1

(1− xit)
−1.

The equality H(t)E(−t) = 1 is immediate. The desired identities are simply
the coefficients of td in this equality.

Proposition 3.4 (Newton Identities). For all d ≥ 1,

dhd =
d∑

i=1

pihd−i and

ded =
d∑

i=1

(−1)i−1pied−i.

Proof. We compute∑
r≥1

prt
r−1 =

∑
i≥1

∑
d≥0

xd
i t

d−1 =
∑
i≥1

xi

1− xit

=
∑
i≥1

d

dt
log

(
(1− xi)

−1) = H ′(t)

H(t)
=

E ′(−t)

E(−t)

and then we read the identities off from the coefficients of td in P (t)H(t) =
H ′(t) and P (t)E(−t) = E ′(−t).

For λ = (λ1, λ2, . . . , λr) we define eλ = eλ1 ·eλ2 · · · eλr , hλ = hλ1 ·hλ2 · · ·hλr ,
and pλ = pλ1 · pλ2 · · · pλr .

Recall the dominance partial ordering on partitions where λ ≥ µ if and
only if λ1 + · · · + λi ≥ µ1 + · · ·µi for all i ≥ 1. (Note this is only a partial
ordering as, for example, (313) and (23) are incomparable.
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Proposition 3.5. We have

eλ =
∑
µ⊢|λ|

Mλµmµ

where Mλµ is the number of {0, 1}-matrices whose rows sum to λ1, λ2, . . . and
whose columns sum to µ1, µ2, . . .. Moreover, Mλµ ̸= 0 if and only if µ ≤ λ†

and Mλλ† = 1.

Proof. We merely sketch the argument. We consider the terms of eλ and mµ

in reference to the following matrix:

X =


x1 x2 x3 · · ·
x1 x2 x3 · · ·
x1 x2 x3 · · ·
...

...
...

. . .

 .

Observe that each {0, 1}-matrix Y produces a monomial xα by taking the
product of the entries ofX corresponding to the non-zero entries of Y . Mono-
mials in eλ are uniquely constructed by taking the product of exactly λ1

distinct entries from row 1, exactly λ2 from row 2, etc. Monomials xµ are
constructed by taking the product of exactly µ1 distinct entries from column
1, exactly µ2 from column 2, etc.

The conditions onMλµ now follow by looking for {0, 1}-matrices satisfying
certain constraints.

After refining our partial order to a total order on the partitions, we
can think of M = (Mλµ) as an infinite integer matrix. Note that Mλµ† is
triangular with 1s along the diagonal. Thus M is invertible and we have the
following important corollary:

Corollary 3.6 (Fundamental Theorem of Symmetric Functions). There is
an equality of rings

SF = Z[e1, e2, . . .]

where e1, e2, . . . are algebraically independent.

Exercise 3.7. Find an analog for Proposition 3.5 for hλ using N-matrices
instead of {0, 1}-matrices. Conclude that SF = Z[h1, h2, . . .] where h1, h2, . . .
are algebraically independent.
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Exercise 3.8. Use the Newton identites to show that SF⊗ZQ ∼= Q[p1, p2, . . .]
where p1, p2, . . . are algebraically independent.

Example 3.9.

e11
e2
e111
e21
e3

e1111
e211
e22
e31
e4


=



2 1
1

6 3 1
3 1
1

24 12 6 4 1
12 5 2 1
6 2 1
4 1
1





m11

m2

m111

m21

m3

m1111

m211

m22

m31

m4


Example 3.10.

h11

h2

h111

h21

h3

h1111

h211

h22

h31

h4


=



2 1
1 1

6 3 1
3 2 1
1 1 1

24 12 6 4 1
12 7 4 3 1
6 4 3 2 1
4 3 2 2 1
1 1 1 1 1





m11

m2

m111

m21

m3

m1111

m211

m22

m31

m4


Example 3.11.

e11
e2
e111
e21
e3

e1111
e211
e22
e31
e4


=



1
1
2

−1
2

1
1
2

−1
2

1
6

−1
2

1
3

1
1
2

−1
2

1
4

−1
2

1
4

1
6

−1
2

1
3

1
24

−1
4

1
8

1
3

−1
4





p11
p2
p111
p21
p3

p1111
p211
p22
p31
p4


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3.2 Young Tableaux

Now we point out a combinatorial interpretation for the Schur functions
and the Kostka numbers. A semistandard Young tableau T of shape λ is
Young diagram of the partition λ whose boxes are filled with positive integers
that are non-strictly increasing in each row and strictly increasing in each
column. The type or content α of a semistandard Young tableau T is the
sequence (α1, α2, . . .) of non-negative integers where αi is the number of boxes
containing i. Given a semistandard Young tableau T of type α, we have a
monomial

xT = xα1
1 xα2

2 · · · .

Example 3.12. The following is a Young tableau of shape 422 and type
(2, 3, 0, 1, 2):

1 1 2 5

2 2

4 5

The corresponding monomial is xT = x2
1x

3
2x4x

2
5.

The following is used as the definition of Schur functions in [Sta99]; that
it agrees with the classical definition above is [Sta99, Theorem 7.15.2].

Theorem 3.13. If λ is a partition, then

sλ =
∑
T

xT

where the sum is over all semistandard Young tableaux of shape λ. In partic-
ular, Kλµ is the number of semistandard Young tableaux of shape λ and type
µ.

Various properties of Kostka numbers are easier to check given this defi-
nition:

Exercise 3.14. For partitions λ, µ, we have Kλµ = 0 unless µ ≤ λ in the
dominance order. Moreover Kλλ = 1.
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In fact, almost all transition matrices of SF can be understood in terms
of Kostka numbers (see [Mac95, §I.6] for a comprehensive treatment). Some
notable examples:

sλ =
∑
µ

Kλµmµ

hλ =
∑
µ

Kµλsµ

eλ =
∑
µ

Kµ†λsµ.

For a partition λ ⊢ n, the specific Kostka number fλ = Kλ(1)n is of
special interest. Namely, fλ counts the number of standard Young tableau
whose boxes contain each of the integers {1, . . . , n} exactly once (while still
increasing down rows and columns). For the (i, j)th box of a Young diagram,
let the hook length h(i, j) count the number of boxes directly below and those
directly to the right of the box (i, j) as well as the box itself.

Theorem 3.15 (Hook Length Formula). fλ = n!∏
h(i,j)

where the product is
over all boxes of the young diagram of λ.

Example 3.16. Consider the partition λ = (4, 3, 2). We fill in each box of
the Young diagram with its hook length:

6 5 3 1

4 3 1

2 1

Thus,

fλ =
9!

6 · 5 · 4 · 3 · 3 · 2
= 168

in this case.

The change of basis between power sums and Schur functions are espe-
cially interesting for the representation theory of symmetric groups as we will
see shortly.
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Example 3.17.

p11
p2
p111
p21
p3

p1111
p211
p22
p31
p4


=



1 1
−1 1

1 2 1
−1 0 1
1 −1 1

1 3 2 3 1
−1 −1 0 1 1
1 −1 2 −1 1
1 0 −1 0 1
−1 1 0 −1 1





s11
s2
s111
s21
s3

s1111
s211
s22
s31
s4


We point out some other useful constructions (without proof) that hope-

fully will encourage the reader to delve more deeply into [Mac95] and [Sta99].
The Hall inner product is the unique symmetric positive definite bilinear

form (−,−) on SF satisfying

(sλ, sµ) = δλµ,

(hλ,mµ) = δλµ, and

(pλ, pµ) = zλδλµ

for all partitions λ, µ.
A consequence of the Fundamental Theorem is that there is a ring iso-

morphism
ω : SF → SF

given by ω(eλ) = hλ for every partition λ. In view of Proposition 3.3, we
see that ω(hλ) = eλ as well. With a bit more work, one can show that
ω(pλ) = ϵλpλ and ω(sλ) = sλ† . This last observation show us that ω is an
isometry of the Hall inner product: (ω(f), ω(g)) = (f, g) for all f, g ∈ SF.

4 Representations of Symmetric Groups

Let Sn be the symmetric group on n letters. Recall that the conjugacy classes
of Sn are in bijection with partitions of n by taking their cycle types. Given
a partition λ ⊢ n and a class function f ∈ C(Sn), we define f(λ) := f(σ)
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where σ ∈ Sn is any permutation with cycle type λ. Let χλ ∈ C(Sn) denote
the characteristic function

χλ(σ) :=

{
1 if σ has cycle type λ,

0 otherwise.

Theorem 4.1. There is a isometric group isomorphism

ch : R(Sn) → SFn,

called the characteristic map, defined by

ch(f) :=
∑
λ⊢n

f(λ)

zλ
pλ.

Viewed as a class function, the values of f ∈ R(Sn) can be computed via

f(λ) = (ch(f), pλ).

The characteristic functions χλ ∈ C(Sn) correspond to pλ
zλ

in SFn
Q. The ir-

reducible characters in R(Sn) are exactly the χλ := chi(sλ) for λ ⊢ n. The
trivial character χ(n) corresponds to hn = sn, and the sign character χ(1n)

corresponds to en = s(1)n. The involution ω : SFn → SFn corresponds to
tensoring with the sign character.

Proof. We only point a few nice facts that are easy to see. First we define
the characteristic map ch : C(Sn) → SFn ⊗Z C since it’s not clear that the
image of R(Sn) is even contained in SFn. Recalling that (pλ, pµ) = zλδµλ, the
formula

f(λ) = (ch(f), pλ)

is immediate. This shows that ch is bijective (on complex vector spaces).
The correspondence between χλ and pλ

zλ
follow now from the observation

that

χλ(µ) = δλµ =

(
pλ
zλ

, pµ

)
for all λ and µ.

Now, recall that the number of elements in Sn with cycle type λ is given
by n!

zλ
. Thus

(χλ, χµ) =

{
1
zλ

if λ = µ,

0 otherwise.
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But this is exactly the same as (pλ, pµ), so ch is an isometry.
We omit the proof of the remaining statements (see [Mac95, §I.7] or

[Sta99, §7.18]).

An immediate corollary of the above theorem is that character table of
Sn is precisely the same as the change of basis matrix between the {pλ} and
{sλ} in SFn. If the entries of the character table of Sn are denoted χλ

µ, then

χλ =
∑
µ

χµ
λχ

µ

is equivalent to

pλ =
∑
µ

χµ
λsµ.

One can now see that the entries of the matrix from Example 3.17 are exactly
the entries of the character tables for S2, S3, and S4.

Definition 4.2. The irreducible representation Vλ of Sn corresponding to χλ

is the Specht module associated to λ.

Proposition 4.3. dimC Vλ = fλ =
n!∏
h(i, j)

Proof. If f ∈ R(Sn) is the character of Vλ, then evaluating at the identity
gives

f(e) = f(1d) = (ch(f), p(1d)) = (sλ, h(1d)) = Kλ(1)f = fλ.

Now we appeal to Theorem 3.15.

Defining the graded group

R(S∗) :=
⊕
n≥0

R(Sn)

we obtain a characteristic map

ch : R(S∗) → SF

by adding together graded components. However, the existing multiplication
on each R(Sn) does not correspond to the multiplication on SF. We define a
multiplication on R(S∗) that makes ch into a graded ring isomorphism.
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There is a natural embedding Sn × Sm ↪→ Sn+m; there are many ways
of doing this, but they are all conjugate. Given a representation ρ of Sn,
we obtain a representation ρ̃ of Sn × Sm from ρ by precomposition with
the first projection. Similarly, given a representation σ of Sm, we obtain a
representation σ̃ of Sn × Sm.

Let R(Sn) be the representation ring of the symmetric group Sn. We
define a bilinear multiplication

⊠ : R(Sn)×R(Sm) → R(Sn+m)

via
ρ⊠ σ := Ind

Sn+m

Sn×Sm
(ρ̃⊗ σ̃).

This turns R(S∗) into a commutative, graded ring and ch is a graded ring
isomorphism.

4.1 Explicit Description of Specht modules

Specht modules can also be described without reference to symmetric func-
tions (see [FH91, §4] and [EGH+11, §5.11-17]).

Here we actually construct each Specht module Vλ as a subrepresenta-
tion of the regular representation of Sn. Note that the isotypic component
associated to Vλ usually has multiplicity greater than 1, so the construction
unsurprisingly relies on an arbitrary choice.

Definition 4.4. A Young tableau T is a Young diagram for a partition λ
of n where each number in {1, . . . , n} is assigned to exactly one box. (Note
that this neither a special case nor a generalization of the standard and
semistandard Young tableau discussed above.) Given a Young tableau T , we
define PT as the subgroup of Sn that permutes only the numbers within each
row of T and QT as the subgroup that permutes only the numbers within
each column of T .

Example 4.5. The following is a Young tableau for the partition 322:

3 1 5

6 2

4 7
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We have

PT = S{1,3,5} × S{2,6} × S{4,7} and QT = S{3,4,6} × S{1,2,7}

where SX is the group of permutations of the set X.

If λ = (λ1, . . . , λr) is a partition, define Sλ := Sλ1×· · ·×Sλr . Observe that
PT

∼= Sλ and QT
∼= Sλ† . The subgroups PT and QT depend on the choice

of tableau T , but the conjugacy class only depends on the corresponding
partition λ.

Given a Young tableau T and a representation W of Sn, define the Young
projectors :

aT :=
1

|PT |
∑
σ∈PT

σ and bT :=
1

|QT |
∑
σ∈QT

ϵ(σ)σ

which are easily seen to be projections in End(W ). The Young symmetrizer
is the endomorphism cT = aT ◦ bT . One checks that cT = bT ◦ aT .

Theorem 4.6. Suppose λ is a partition of n. If Vreg is the regular rep-
resentation and T is a Young tableau for λ, then the image of cT (Vreg) is
isomorphic to the Specht module Vλ.

Proof. We only sketch this. First, let UT = aT (Vreg) and WT = bT (Vreg). We
observe that

UT
∼= IndSn

PT
1PT

and
WT

∼= IndSn
QT

ϵQT

where 1PT
is the trivial representation and ϵQT

is the sign representation. In
other words, the characteristic of UT is

ch(1⊠ · · ·⊠ 1) = hλ1 · · ·hλr = hλ,

while the characteristic of WT is

ch(ϵ⊠ · · ·⊠ ϵ) = eλ†
1
· · · eλ†

r
= eλ† .

Writing out hλ and eλ† in the Schur basis, we see that sλ is the only basis
vector with a non-zero entry in both. Moreover, (sλ, hλ) = (sλ, eλ†) = 1.
Thus, the image cT = aT ◦bT is isomorphic to the Specht module Vλ provided
the image is non-zero.
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Let {vσ}σ∈Sn be the standard basis for the regular representation Vreg.
We have the concrete description

cT (v1) =
1

|PT ||QT |
∑
σ∈PT

∑
τ∈QT

ϵ(τ)vστ .

Since PT ∩QT = {1}, the vστ are all distinct. Thus cT ̸= 0 as desired.

5 Representations of GL(V )

Schur functors are described directly in [FH91, §6] and [EGH+11, §5.19,5.20-
23]. Slightly more sophisticated expositions can be found in [Sta99, Appendix
7.2] and [Mac95, Appendix I.A].

Definition 5.1. Given a complex n-dimensional vector space V , a polynomial
representation (resp. rational represenation of GL(V ) is a representation

ρ : GL(V ) → GLN(C)

where the entries of ρ(g) are polynomial (resp. rational) functions of the
entries of g.

Remark 5.2. For those who know some algebraic geometry, the rational rep-
resentations are rational maps on the ambient matrix ring Cn2

, but they are
regular on the open set GLn(C). The polynomial representations are regular
on the whole of Cn2

. Watch out: some authors use “polynomial representa-
tion” synonymously with rational representations.

Example 5.3. If V = C2, then S2(V ) ∼= C3 has a natural action of GL(V ).
Indeed, choosing bases {x, y} for V and {x2, xy, y2} for S2(V ) we obtain a
representation ρ : GL2(k) → GL3(k) with

ρ

(
a b
c d

)
=

a2 2ab b2

ac ad+ bc bd
c2 2cd d2


as explicit description.

Example 5.4. If V has dimension n, recall that Λn(V ) has dimension 1. The
natural representation ρ : GL(V ) → GL(Λn(V )) ∼= k is the determinant.
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More generally, Sk(V ) and Λk(V ) have canonical actions of GL(V ) for all
k ≥ 0.

Example 5.5. Consider the representation ρ : GL1(C) → GL1(C) given by

ρ(z) =
z

|z|
.

This is neither a polynomial nor rational representation.

Example 5.6. The dual representation V ∨ of V is the natural action of
GL(V ) on V ∨. Choosing a basis and taking its dual basis, the dual rep-
resentation corresponds to taking the transpose inverse (AT )−1 of a matrix
A. This is not a polynomial representation since the entries of (AT )−1 have
denominators. However, recall that the inverse matrix A−1 has the form
det(A) adj(A) where adj(A) is the adjugate matrix. The entries of the ad-
jugate matrix are polynomial functions of the entries of the original matrix.
Since (AT )−1 = adj(A)T det(A)−1, we conclude that V ∨ is a rational repre-
sentation.

The difference between polynomial and rational representations is, for-
tunately, easily characterized. Indeed, the denominators that occur in the
rational functions can only be powers of the determinant or else the repre-
sentation is not defined for every point of GL(V ).

Proposition 5.7. If ρ is a rational representation of GL(V ), then there is
a unique minimal non-negative integer m and a unique polynomial represen-
tation σ such that such that

ρ(g) =
σ(g)

det(g)m

for all g ∈ GL(V ).

Given a complex n-dimensional vector space V , recall that there is a
natural action of Sd on the tensor power V ⊗d satisfying

σ(v1 ⊗ · · · ⊗ vd) = σ(vσ−1(1) ⊗ · · · ⊗ vσ−1(d))

for σ ∈ Sd. There is also a natural “diagonal” action of GLn(V ) on V ⊗d

satisfying
g(v1 ⊗ · · · ⊗ vd) = g(v1)⊗ · · · ⊗ g(vd)

for all g ∈ GL(V ). These actions clearly commute, so we obtain an action of
Sd ×GL(V ) on V ⊗d.
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Definition 5.8. Given a partition λ ⊢ d, we have the Schur functor Sλ,
which takes a vector space W to the following GL(W )-representation:

Sλ(W ) := HomSd
C (Vλ,W

⊗d) .

Remark 5.9. For those who know some category theory, each Schur functor
Sλ is a covariant functor from the category of finite-dimensional vector spaces
to itself. This implies that if f : W → U is a linear map, then we also have
a linear map

Sλ(f) : Sλ(W ) → Sλ(U).

The fact that these are GL(W ) representations can be seen as just a conse-
quence of the fact that they are functors. (In particular, Schur functors can
be defined for more general tensor categories.)

Theorem 5.10 (Schur-Weyl). Let W be an n-dimensional complex vector
space and let d ≥ 0. As an Sd ×GL(W )-representation, there is a canonical
decomposition

W⊗d =
⊕
λ⊢d

ℓ(λ)≤n

Vλ ⊗ Sλ(W )

where Vλ is the Specht module of λ and each

Sλ(W ) := HomSd
C (Vλ,W

⊗d)

is an irreducible GL(W )-representation.

Theorem 5.11. The isomorphism classes of all polynomial irreducible rep-
resentations of GL(W ) are precisely the Sλ(W ) where ℓ(λ) ≤ d. Moreover,
if g ∈ GL(W ) has eigenvalues α1, . . . , αn, then

tr(Sλ(g)) = sλ(α1, α2, · · · , αn, 0, 0, · · · )

we conclude sλ is the character of Sλ.

By evaluating Sλ at the identity, we can determine the dimensions of the
irreducible representations obtained from Schur functors.

Corollary 5.12 (Weyl Dimension Formula). If W is an n-dimensional vector
space and λ is a partition. If ℓ(λ) ≤ n, then

dim Sλ(W ) = sλ(1, 1, . . . , 1, 0, . . .) =
∏

1≤i<j≤n

λi − λj + j − i

j − i
.

If ℓ(λ) > n, then dim Sλ(W ) = 0.
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Example 5.13. Since V(d) is the trivial Sd-representation, we see that

S(d)(W ) = HomSd
C (C,W⊗d) ∼= Symd(W ) ∼= Sd(W ).

Example 5.14. Since V(1d) is the sign Sd-representation ϵ, we see that

S(1d)(W )L = HomSd
C (ϵ,W⊗d) ∼= Altd(W ) ∼= Λd(W ).

Note that S(1d)(W ) = 0 when dim(W ) > d.
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