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1 Basic Concepts

Some of the notions discussed here can also be found in [Ser77, §1]. We
will use many other sources for this material, but most (correctly!) use the
module-theoretic perspective, which we want to defer for the moment.

Definition 1.1. Let V be a vector space over a field k. The general linear
group of V , denoted GL(V ), is the group of invertible linear transformations
V → V . For a non-negative integer n, we use the notation GLn(k) :=
GL(kn).

The group GLn(k) can be canonically identified with the set of n × n
invertible matrices with entries in k.

Definition 1.2. Suppose G is a group. A linear representation of G is a
group homomorphism ρ : G → GL(V ) for a vector space V . The degree of a
linear representation is the dimension of the corresponding vector space V .
A linear representation ρ is faithful if ρ is injective as a map of sets.

We often refer to the “representation V ”, indicating its underlying vector
space, rather than the homomorphism ρ. We will sometimes write ρg instead
of ρ(g) as it is easier to read. Later, we will simply write “g” for ρ(g) when
there is no danger of confusion.

Example 1.3. For any group G, the zero representation is the representation
of degree 0 (it is unique up to isomorphism).
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Example 1.4. For any group G, the unit or trivial representation is the
representation

ρ : G → GL1(k)

given by
ρ(g) = idk

for all g ∈ G.

Example 1.5. Let G = ⟨g⟩ be the cyclic group of order n. There is a
representation

ρ : G → GL1(C)

defined by

ρ(gk) = e
2πi
n

k .

Example 1.6. Let D8 = ⟨s, r | s2, r4, (sr)2⟩ be the dihedral group of order
8. There is a representation

ρ : G → GL2(k)

defined on generators by

ρ(s) =

(
0 1
1 0

)
, ρ(r) =

(
0 −1
1 0

)
and extended to other elements by using the fact that ρ must be a group ho-
momorphism. Note that ρ is a faithful representation if and only if char(k) ̸=
2.

Example 1.7. For any group G with a left action on a set X, let V be the
vector space with basis indexed by X:

V = span{ex : x ∈ X} .

Define the permutation representation corresponding to X as the represen-
tation

ρ : G → GL(V )

defined such that
ρ(g)(ex) = eg(x)

for all g ∈ G and x ∈ X.
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Example 1.8. For any group G, the regular representation of G is the per-
mutation representation of the action of G on itself by left multiplication. In
other words, V is the vector space with basis indexed by G:

V = span{eg : g ∈ G}

and the representation
ρ : G → GL(V )

is defined such that
ρ(g)(eh) = egh

for all g, h ∈ G.

Example 1.9. Linear representations ρ : Z → GLn(k) are completely de-
termined by the image of ρ(1) since ρ(n) = ρ(1)n for all n ∈ Z. This gives
a canonical bijection of linear representations of Z of degree n and n × n
invertible matrices.

1.1 Equivariant Maps

Definition 1.10. Let V andW be vector spaces over the same field. Suppose

ρ : G → GL(V ), and

ρ′ : G → GL(W )

are linear representations of the same group G. A linear map τ : V → W is
G-equivariant if

ρ′(g) ◦ τ = τ ◦ ρ(g)
for all g ∈ G. The two representations are similar or isomorphic if there
exists an invertible G-equivariant linear map τ : V → W . Let HomG

k (V,W )
be the subset of G-equivariant linear maps f : V → W .

An archaic term for G-equivariant map is “intertwining operator,” but
this is disappearing (thankfully in my view).

Example 1.11. If A and B are similar invertible matrices, then there exists
an invertible matrix P such that A = PBP−1. Recall that An = PBnP−1

for all integers n. In view of Example 1.9, we conclude that equivalence
classes of linear representations of Z of degree n are in canonical bijection
with similarity classes of n× n invertible matrices.
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Example 1.12. Let ρ : Z/4Z → GL1(C) be the representation where ρ(1) =
(i) and let σ : Z/4Z → GL2(C) be the representation where

σ(1) =

(
0 −1
1 0

)
.

Define ρ′(g) = ρ(g−1) and σ′(g) = σ(g−1) for all g ∈ G. By considering
eigenvalues, we conclude that σ′ and σ are equivalent, but ρ′ and ρ are not.

Example 1.13. Let ρ be the 3-dimensional permutation representation as-
sociated to the action of S3 on {1, 2, 3}. In the usual basis, we have

ρ(23) =

1 0 0
0 0 1
0 1 0

 and ρ(123) =

0 0 1
1 0 0
0 1 0

 .

Suppose ζ ∈ k is a primitive cube root of unity. Via the change of basis
matrix

P =

1 1 1
1 ζ2 ζ
1 ζ ζ2


we have a new representation σ where

σ(23) =

1 0 0
0 0 1
0 1 0

 and σ(123) =

1 0 0
0 ζ 0
0 0 ζ2

 .

Observe that ρ and σ are similar by construction.

1.2 Subrepresentations

Definition 1.14. Let ρ : G → GL(V ) be a linear representation. A subspace
W ⊂ V is stable under the action of G if ρg(w) ∈ W for all g ∈ G, w ∈ W .
Define ρW : G → GL(W ) by ρW (g) := ρ(g)|W for all g ∈ G. We say ρW is a
subrepresentation of ρ.

We will also say simply “W is a subrepresentation of V ” in the above
situation.

If W is a subrepresentation of V then

ρg(v + w) = ρg(v) + ρg(w) ∈ ρg(v) +W

for any v ∈ V , w ∈ W , and g ∈ G. This gives rise to a well-defined quotient
representation ρ′ : G → GL(V/W ) on the quotient space V/W .
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Definition 1.15. Given representations (V, ρ), (W,σ) of a group G, the
direct sum representation ρ ⊕ σ is the representation with underlying space
V ⊕W given by

(ρ⊕ σ)g(v, w) := (ρg(v), σg(v))

for all v ∈ V , w ∈ W , and g ∈ G.

Proposition 1.16. Let V and W be representations of G, and let f : V → W
be a G-equivariant map. Then ker(f) is a subrepresentation of V .

Example 1.17. In the notation of Example 1.13, we see that V can be
written as a direct sum U ⊕W where

U = span
{(

1, 1, 1
)T}

is a trivial representation, and

W = span
{(

1, ζ, ζ2
)T

,
(
1, ζ2, ζ

)T}
is a 2-dimensional faithful representation of S3.

Example 1.18. Suppose G = ⟨g⟩ is a finite cyclic group. Recall that ev-
ery matrix of finite order can be diagonalized over C. Thus, every finite-
dimensional complex representation of G is a direct sum of 1-dimensional
representations.

Example 1.19. If V is a representation of G, define the space of invariants

V G = {v ∈ V | gv = v for all g ∈ G}.

Observe that V G is a subrepresentation of V and it is a direct sum of trivial
representations.

Definition 1.20. A linear representation V is irreducible if V ̸= 0 and the
only subrepresentations of V are 0 and V itself. Otherwise, the representation
is reducible.

Definition 1.21. A linear representation V is indecomposable if V ̸= 0 and
V cannot be written as a direct sum V = W1⊕W2 whereW1,W2 are non-zero
subrepresentations. Otherwise, the representation is decomposable.
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A decomposable representation is clearly reducible, but the converse may
not hold as the next example demonstrates.

Example 1.22. LetG = Z/pZ for a prime p and consider the two-dimensional
representation ρ over Fp given by

ρ(1) =

(
1 1
0 1

)
.

A vector

(
a
b

)
spans a G-stable subspace only if b = 0. The subspace spanned

by

(
1
0

)
is a proper non-zero subrepresentation of ρ, so ρ is reducible. How-

ever, this is the only subrepresentation so ρ cannot be written as a direct
sum of proper subrepresentations. We conclude that ρ is indecomposable.

Theorem 1.23 (Krull-Schmidt). Suppose V is a finite-dimensional repre-
sentation of a finite group G. All decompositions

V ∼= W1 ⊕W2 ⊕ · · · ⊕Wr

into indecomposable representations are unique up to isomorphism and re-
ordering.

Proof. Deferred for now. We will prove this in more generality when we
discuss modules.

Remark 1.24. The Krull-Schmidt theorem fails for representations G →
GL(Z), so the fact we’re working over a field is vital here. Unfortunately,
counterexamples are rather subtle!

Theorem 1.25 (Schur’s Lemma). If V and W are finite-dimensional irre-
ducible representations and k is algebraically closed, then

HomG
k (V,W ) =

{
0 if V ̸∼= W

k if V ∼= W.

Proof. Let ϕ : V → W be a G-equivariant map. Since V is irreducible,
either ker(ϕ) = 0 or ker(ϕ) = V . Since W is irreducible, either im(ϕ) = 0 or
im(ϕ) = W . Thus, ϕ is either 0 or an isomorphism.
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Thus, we are reduced to the case where W = V . Now EndG
k (V ) =

HomG
k (V,W ) is a k-algebra under composition. If ϕ ∈ EndG

k (V ) is non-zero,
it must be an isomorphism. Thus ϕ−1 is also in EndG

k (V ). We conclude that
EndG

k (V ) is a division algebra. The result now follows from Lemma 1.26.

Lemma 1.26. If k is an algebraically closed field, then every finite-dimensional
division k-algebra D is isomorphic to k.

Proof. Suppose a ∈ D \ {0}. Since D is finite-dimensional, multiplication
by a has a minimal polynomial ma(t) ∈ k[t]. If ma does not have degree
1, then ma(t) = f(t)g(t) for non-constant polynomials f, g ∈ k[t] since k is
algebraically closed. The equation 0 = ma(a) = f(a)g(a) forces either f(a) =
0 or g(a) = 0 since D is a division ring. But this contradicts minimality of
the minimal polynomial. We conclude that ma(t) = t − λ for some λ ∈ k.
Thus a is scalar multiplication by λ and thus is an element of k.

Definition 1.27. A linear representation V is completely reducible if V is a
direct sum of irreducible representations.

Suppose V is completely reducible. The Krull-Schmidt theorem tells us
that there exist irreducible representations W1, . . . ,Wr, which are pairwise
non-isomorphic, such that

V =
r⊕

i=1

Vi (1.1)

where each Vi is isomorphic to

Vi = W⊕mi
i

for some positive integermi. The expression (1.1) is called the isotypic decom-
position of V . The subrepresentations Vi are called the isotypic components
of V associated to Wi while the integers mi are called the multiplicities of
Wi in V .

Each Vi is a canonical subrepresentation of V , while classifying subrep-
resentations isomorphic to Wi may depend on arbitrary choices. This gener-
alizes how the eigenspaces of a linear transformation are canonical, while a
basis of eigenvectors may depend on arbitrary choices.

Exercise 1.28. Prove the Krull-Schmidt theorem for the case of completely
reducible representations V when the field k is algebraically closed. (Hint:
use Schur’s Lemma.)
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The following theorem is the main reason why representation theory of fi-
nite groups in “good” characteristic is a completely different story from “bad”
characteristic. By convention, every integer is “coprime to the characteristic
of k” when the characteristic is 0.

Theorem 1.29 (Maschke). Let G be a finite group of order coprime to the
characteristic of k. Every finite-dimensional representation of G is com-
pletely reducible.

This theorem follows by induction and the following lemma:

Lemma 1.30. Let G be a finite group of order coprime to the characteristic
of k. If V is a representation of G and W is a subrepresentation of V , then
there exists a subrepresentation U of V such that V = W ⊕ U .

Proof. Let Q : V → W be a projection from V onto the subspace W . The
projection Q exists for linear algebraic reasons and is not necessarily G-
equivariant. However, we will tweak it so that it is G-equivariant. Define
P : V → W via

P (v) =
1

|G|
∑
g∈G

g
(
Q
(
g−1v

))
for all v ∈ V . Note that the condition on the characteristic of the field is
needed to divide by the order of the group.

We claim that P : V → W is a G-equivariant projection onto W . Since
Q restricts to the identity on W and W is G-stable, we see that g ◦Q ◦ g−1

is a projection onto W for all g ∈ G. Thus, we have

P 2(v) =
1

|G|2
∑
g,h∈G

gQg−1hQh−1v

=
1

|G|2
∑
g,h∈G

hQh−1v

=
1

|G|
∑
h∈G

hQh−1v = P (v)

and conclude that P is a projection. Since P |W = idW , we conclude it is a
projection onto W .
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Now we show that P is equivariant. This follows from a reindexing trick
j = h−1g in the following:

P (hv) =
1

|G|
∑
g∈G

gQg−1(hv)

=
1

|G|2
∑
j∈G

hjQj−1v

= h

(
1

|G|
∑
j∈G

jQj−1v

)
= hP (v).

The kernel of P is the desired G-stable complement U .

1.3 Constructions

Suppose (V, ρ) and (W,σ) are finite-dimensional linear representations of a
group G over a field k.

Let Homk(V,W ) denote the vector space of linear transformations τ :
V → W . Let V ∨ be the vector space dual to V . Let V ⊗W be the tensor
product over k.

Proposition 1.31. The vector space Homk(V,W ) has a canonical structure
of a linear representation τ where

τg(f) = σ(g) ◦ f ◦ ρ(g)−1

for all f : V → W and g ∈ G.

The G-action defined above has the very useful property that the set of G-
equivariant homomorphisms is precisely the set of invariants of the G-action
on the set of homomorphisms. In other words,

HomG
k (V,W ) = Homk(V,W )G.

Proposition 1.32. The dual space V ∨ has a canonical structure of a linear
representation ρ∨ where

(ρ∨)g(f) = f ◦ ρ(g)−1

for f : V → k and g ∈ G.
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Note that the above proposition is a special case of the action on homo-
morphisms when W = k has a trivial G-action.

Proposition 1.33. The tensor product V ⊗W has a canonical structure of
a linear representation ρ⊗ σ where

(ρ⊗ σ)g(v ⊗ w) = ρg(v)⊗ σg(w)

for v ∈ V , w ∈ W and g ∈ G.

Note that the above proposition agrees with the G-action one obtains
from the canonical isomorphism

Homk(W,V ) ∼= W∨ ⊗ V.

Exercise 1.34. For a vector space V , determine the actions of G on T d(V ),
Sd(V ), Λd(V ), Symn(V ), and Altn(V ). Verify that the various canonical
maps are equivariant.
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