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Throughout, k is a field of characteristic 0 and k is the algebraic closure of
k. (For those uncomfortable with infinite Galois extensions, one can instead
replace k with the Galois closure of the finitely many relevant finite field
extensions showing up in any of the contexts we discuss below.)

Much of this is inspired from [Ser77, §12–13].

1 Representation Ring via Modules

Let G be a finite group.
Recall that kG is the group algebra of G over k. Since k has characterstic

0, we know kG is semisimple. We have a canonical decomposition

kG ∼=
r⊕

i=1

Ai

where A1, . . . , Ar are simple k-algebras.
Each Ai is a central simple Fi-algebra for a finite field extension Fi/k.

Let ni = deg(Ai) be the degree of Ai. Equivalently, we have n2
i = dimFi

(Ai)
or

Ai ⊗Fi
k ∼= Mni

(k)

as k-algebras.
More precisely, there exists a central division Fi-algebra Di and a positive

integer mi such that
Ai

∼= Mmi
(Di)

as Fi-algebras. Both mi and the isomorphism class of Di are uniquely de-
termined. Let di := ind(Ai) denote the Schur index of Ai. We have di =
deg(Di), which is equivalent to d2i = dimFi

(Di). Also, we have ni = midi.
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Each Ai has a simple module Vi, which is unique up to isomorphism.
Since Vi ∼= D⊕ni

i , we see that

dimk Vi = [Fi : k]mid
2
i = [Fi : k]dini.

The vector spaces V1, . . . , Vr are precisely the irreducible representations of
G over k. The Schur index of Vi is defined to be the Schur index di of the
associated algebra Ai.

Let Γ be the absolute Galois group Gal(k/k). Let Xi := Homk−alg(Fi, k).
Observe that Xi has a left action of Γ by post-composition. Informally, Xi

can be thought of as the set of roots of the minimal polynomial of a primitive
element of Fi/k. We have a k-algebra isomorphism

ω : Fi ⊗k k ∼=
⊕
σ∈Xi

k

via ω(f ⊗ ℓ)σ := σ(f)ℓ.
For each σ ∈ Xi, we may define a tensor product Ai ⊗σ k of Fi-algebras

where we use the structure map Fi → Ai on the left and the homomorphism
σ : Fi → k on the right. Via the sequence of isomorphisms of k-algebras

Ai ⊗k k ∼= Ai ⊗Fi
Fi ⊗k k ∼= Ai ⊗Fi

⊕
σ∈Xi

k

we obtain an isomorphism

Ω : Ai ⊗k k ∼=
⊕
σ∈Xi

Ai ⊗σ k.

LetWi,σ be the irreducible representation of kG corresponding to Ai⊗σ k.
We conclude that we have the following decomposition

Vi ⊗k k ∼=
⊕
σ∈Xi

W⊕di
i,σ

for each irreducible representation Vi of kG.
If ρi,σ : G→ GL(Wi,σ) are the corresponding maps, then notice that

τ ◦ ρi,σ = ρi,τ(σ)

for every τ ∈ Γ. Thus, there is a left action of Γ on the set of irreducible
representations of G over k with orbits corresponding to the Γ-sets Xi.
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2 Character Theory

We have only developed character theory over C. However, since we are deal-
ing with finite-dimensional representations of finite groups, by the Lefschetz
principle all the results we discussed hold over an arbitary algebraically closed
field of character 0. In particular, we may identify the representation rings
R(G) = RC(G) = Rk(G) where k is the algebraic closure of k.

Recall that the representation ring Rk(G) of G over k is the additive group
of virtual representations over k with multiplication obtained extending the
tensor product on the subrig R+

k (G). From above, we see that Rk(G) is a
free abelian group on the set [V1], . . . , [Vr].

The map [V ] 7→ [V ⊗k k] gives a canonical injective ring homomorphism

Rk(G) ↪→ Rk = R(G)

and therefore a canonical injective ring homomorphism

Rk(G) ↪→ C(G)

where C(G) is the set of complex class functions on G.
Just as in the complex case, given a representation (V, ρ) of G over k, we

define the character χV : G→ k via the trace χV (g) := tr(ρ(g)). This agrees
with the map Rk(G) ↪→ C(G) defined above. Thus, we identify Rk(G) with
a subring of R(G) and C(G) in what follows.

Let χ1, . . . , χr be the irreducible representations of G over k correspond-
ing to the algebras A1, . . . , Ar above. Let ψi,σ : G → k be the character
corresponding to the irreducible representation Wi,σ defined in the previous
section.

Theorem 2.1. For every 1 ≤ i ≤ r, we have

χi = di
∑
σ∈Xi

ψi,σ.

In particular, the characters χ1, . . . , χr are an orthogonal basis for the sub-
space Rk(G) of C(G).

Proof. The description of χi follows from the results in the previous section.
The orthogonality follows from the fact that the ψi,σ are orthogonal.
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Note that we only have the {χ1, . . . , χr} is an orthogonal basis; it is not
necessarily orthonormal.

There are in fact three different traces that one may consider for each
irreducible representation Vi. We have the ordinary trace χi(g) ∈ k as an
element of Endk(Vi). We may also define ϕi(g) ∈ Fi as the trace of g in
EndFi

(Vi). Finally, we have ψi(g) ∈ Fi as the reduced trace Trd(g) viewing g
as an element of the central simple Fi-algebra Ai. These traces are all related
via

χi = TrFi/k ◦ϕi, ϕi = diψi

where we recall that di is the Schur index of the central simple Fi-algebra
Ai (equivalently, the representation Vi). Finally for each σ ∈ Xi, we see
that ψi,σ = σ ◦ψi. This gives another way of obtaining the decomposition of
Vi ⊗k k above.

2.1 Definability of Representations

Recall, from the previous section, that the absolute Galois group permutes
the irreducible representations of kG. Indeed, if ρi,σ : G → GL(Wi,σ) is the
map then we have

τ ◦ ρi,σ = ρi,τ(σ)

for τ ∈ Γ. This action is identical to the one obtained by acting on the
characters

τ ◦ ϕi,σ = ϕi,τ(σ)

where we recall ϕi,σ : G→ k is just a particular class function.

Theorem 2.2. Let Rk(G) be the subset of R(G) consisting of characters
whose class functions whose image is defined over k. Then Rk(G) has basis

χ1

d1
,
χ2

d2
, · · · , χr

dr
.

Thus Rk(G) can be completely recovered from the character table over C.
Namely, one can reconstruct the χi/di as the sums of Γ-orbits of the complex
characters. To reconstruct Rk(G), one needs to know the Schur indices.

Proposition 2.3. If G is an abelian group, then Rk(G) = Rk(G)

Proof. If G is abelian, then kG is commutative, so all constituent division
algebras are fields. Thus all Schur indices are trivial.
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We are now in a position to prove an important theorem of Brauer, which
essentially reduces the study of definability of representations of arbitrary
fields of characteristic 0 to the case of cyclotomic fields.

Theorem 2.4. If G is a finite group of exponent e, then every representation
of G over an arbitrary field of characteristic 0 is conjugate to a representation
defined over the cyclotomic field Q(ζe).

Proof. Let K = Q(ζe). We want to show that RK(G) = R(G). By Brauer’s
theorem, we may write a general element χ of R(G) in the form

ρ =
m∑
i=1

ci Ind
G
Hi
(τi)

where the ci’s are integers, the Hi are subgroups of G, and each τi is a one-
dimensional representations of R(Hi). A one-dimensional representation of
Hi is defined over Q(ζe) since Hi has exponent at most e. We conclude that
χ is an integral linear combination of representations induced from RK(Hi),
so is in RK(G) as desired.

3 Column Orthogonality

We saw above that χ1, . . . , χr are an orthogonal basis for Rk(G). This
amounts to showing that the rows of the character table of G (over k) are
orthogonal. However, we now have “too many” columns if we expect a square
character table. Here we investigate this issue.

For each positive integer n, define the Adams operation Ψn : C(G) →
C(G) as the function that takes a class function χ to the class function
Ψn(χ) defined by

Ψn(χ)(g) := χ(gn)

for each g ∈ G.

Proposition 3.1. Every Adams operation restricts to a ring homomorphism
from Rk(G) to itself.

Proof. Let χ be the character of a representation (V, ρ). For a given g,
consider the multiset of eigenvalues

a1, . . . , am
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of ρ(g). Thus χ(g) = p1 where p1 is the first power sum polynomial in
a1, . . . , am. We have χ(gn) = pn where pn is the power sum polynomial

an1 + · · ·+ anm.

By the fundamental theorem of symmetric polynomials, there exists a poly-
nomial fn with integer coefficients such that

pn = fn(e1, . . . , em)

where e1, . . . , em are the elementary symmetric polynomials in a1, . . . , an.
The function fn does not depend on the eigenvalues, so we have an ex-

pression
Ψn(χ) = fn(Λ

1χ, . . . ,Λnχ)

in the ring C(G). Since exterior powers of a representation are representa-
tions, we see that Ψn(χ) is in Rk(G) as desired.

Recall that the exponent e of a finite group is the least common multiple
of the orders of all the elements g ∈ G. Equivalently, the exponent e is the
least positive integer such that ge = 1 for all g ∈ G.

Lemma 3.2. If n is relatively prime to e, then the function g 7→ gt is a
bijection from G to itself, which takes conjugacy classes to conjugacy classes.

Proof. Let s be the multiplicative inverse of n modulo e, which exists since
t is relatively prime to e. The function g 7→ gs is the inverse function to
g 7→ gt since gts = g1 = g.

From this we immediately conclude:

Corollary 3.3. If t is relatively prime to e, then Ψt : R(G) → R(G) is an
isomorphism.

Thus, for appropriate t, the Adams operations Ψt permute the columns
of the character table of R(G).

In view of Theorem 2.4, we may assume that k ⊆ K = Q(ζe) where e is
the exponent of G. Let Γ be the Galois group of K/k. Observe that Γ is a
subgroup of (Z/eZ)×. Let Γ be generated by σ1, . . . , σs where σ(ζe) = ζte for
some t1, . . . , ts in (Z/eZ)×.
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We now have two actions of Γ on R(G). Given γ ∈ Γ and χ ∈ R(G), we
have

(γ ∗ χ)(g) := γ(χ(g))

for all g ∈ G, where we view χ : G→ K as a function with codomain K ⊂ k.
We also have the action using the Adams operation which is generated by

σi ∗′ χ := Ψti(χ)

for 1 ≤ i ≤ s.

Proposition 3.4. The two actions of Γ on R(G) coincide.

Proof. The eigenvalues of every matrix M in every representation of G is an
eth root of unity. Thus, if χ is a character in R(G), then

(σi ◦ χ)(g) = Ψti(χ)(g)

for every σ ∈ Γ.

Observe that we can define the Γ-action directly on the conjugacy classes
of G using the above identification. In view of this, we define the Γ-classes
(or K-classes) of G to be the unions of Γ-orbits of conjugacy classes. We
therefore have:

Theorem 3.5. Rk(G) is precisely the subset of R(G) whose corresponding
characters are fixed by the Γ-action.

As an immediate corollary, we obtain:

Corollary 3.6. The number of irreducible characters of G over k is equal to
the number of Γ-classes of G.

Note that the particular action of Γ on G is determined by a choice of
isomorphism of Γ with its image in (Z/eZ)×, but the Γ-classes do not depend
on this choice. Thus the Γ-classes of G are totally group-theoretic. In par-
ticular, we don’t actually need to compute the character table to determine
the number of irreducible representations (just like over C).

However, we only obtain Rk(G) from this analysis. More work needs to
be done to identify the Schur indices.
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3.1 Representations over the rationals

Here we consider the important special case where k = Q. Let G be a finite
group with exponent e. As above, K = Q(ζe) where ζe is a primitive eth root
of unity. The Galois group Γ = Gal(K/k) is isomorphic to the full group
(Z/eZ)× by standard results on cyclotomic fields.

In this case, the Γ-classes from above have a simple description:

Lemma 3.7. Two elements g, h ∈ G belong to the same Q-class if and only
if they generate conjugate cyclic subgroups.

Proof. Observe that ⟨g⟩ = ⟨h⟩ if and only if gs = h and ht = g for some
integers s and t. Observe that t, s are relatively prime to n = ⟨g⟩. Since
n divides the exponent e of G, we have a surjective group homomorphism
(Z/eZ)× → (Z/nZ)×. Thus, we may assume s and t are relatively prime to
e. Since Γ ∼= (Z/eZ)×, we conclude ⟨g⟩ = ⟨h⟩ if and only if g and h are in
the same Γ-orbit. This respects conjugacy classes.

We conclude the following:

Theorem 3.8. The number of isomorphism classes of irreducible represen-
tations of a finite group G over Q is equal to the number of conjugacy classes
of cyclic subgroups of G.

We point out the following pleasant parallels with permutation represen-
tations and complex representations:

• The number of irreducible permutation representations are in bijec-
tion with the number of conjugacy classes of subgroups.

• The number of irreducible rational representations are in bijection
with the number of conjugacy classes of cyclic subgroups.

• The number of irreducible complex representations are in bijection
with the number of conjugacy classes of elements.

4 Representations over the reals

Let V be a finite-dimensional complex representation of a finite group G.

Proposition 4.1. V has a G-invariant inner product.
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Proof. Let b : V ×V → C be an inner product (not necessarily G-invariant).
Define a function B : V × V → C by

B(v, w) =
∑
g∈G

b(gv, gw)

for v, w ∈ V . Observe that B is also sesquilinear and that B(v, v) > 0 for all
v ̸= 0. Thus B is also an inner product.

The previous proposition has the following interpretation:

Corollary 4.2. Every finite subgroup of GLn(C) is conjugate to a finite
subgroup of the unitary group U(n).

Crucially, we can only produce a sesquilinear form in general; there may
not be a non-trivial bilinear form. For example, a non-trivial one-dimensional
complex representation of G = Z/3Z has no non-trivial G-invariant bilinear
forms; otherwise, we have a contradiction

1 = (v, v) = (gv, gv) = (ζ3v, ζ3, v) = ζ23 (v, v) = ζ23

for v a vector of norm one and g a generator of G.
However, we know that sesquilinear forms and bilinear forms are essen-

tially the same over real closed fields. It turns out this leads to an interesting
theory. We say that V is realizable over R if there exists a real representation
W of G such that W ⊗R C ∼= V .

Theorem 4.3 (Frobenius-Schur). A complex representation V is realizable
over R if and only if there exists a G-invariant non-degenerate symmetric
bilinear form on V .

Proof. Suppose first that V is realizable over R. Let W be the real rep-
resentation such that V = W ⊗R C. Observe that W has a G-invariant
non-degenerate symmetric bilinear form q by the same argument as Proposi-
tion 4.1 (inner products are the same as non-degenerate symmetric bilinear
forms over R). Now q⊗RC is a G-invariant non-degenerate symmetric bilin-
ear form on V .

For the converse, we have a non-degenerate symmetric bilinear form B on
V . We also have a G-invariant inner product (−,−). We define a function
φ : V → V such that

B(x, y) = (φ(x), y)

Last Revised: April 21, 2023 9 of 12



MATH 742 Representations over non-closed fields Spring 2023

for all x, y ∈ V (this is unique and well-defined since both B and the in-
ner product are non-degenerate). Observe that φ is conjugate-linear and
bijective. Thus φ2 is a linear automorphism of V .

We claim φ2 is a positive-definite Hermitian operator. Indeed,

(φ2(x), y) = B(φ(x), y) = B(y, φ(x)) = (φ(y), φ(x))

for all x, y ∈ V . Thus we have

(φ(x), φ(y)) = (φ2(y), x).

Since inner products are conjugate-symmetric, we obtain

(φ2(x), y) = (x, φ2(y))

and conclude that φ2 is Hermitian. Moreover, (φ2(x), x) = (φ(x), φ(x))
implies that we have positive-definiteness.

Every positive-definite Hermitian operator φ2 has a unique positive-definite
Hermitian square root ω such that ω2 = φ2. Moreover, ω commutes with φ.
Let σ = φω−1. We see that σ : V → V is a conjugate-linear map with square
equal to the identity. Moreover, σ is G-equivariant.

Since σ is conjugate-linear, it is in particular R-linear. Let VR be the
(real) 1-eigenspace of σ and let VI be the (real) −1-eigenspace of σ. Since σ
is conjugate-linear, we see that VI = iVR. We therefore have V = VR ⊕ iVI
as desired.

Now assume V is irreducible and let χ be its character.

Definition 4.4. The Frobenius-Schur indicator of V is the number

ι(V ) :=
1

|G|
∑
g∈G

χ(g2).

In order to understand representation theory over R, it is worth pointing
out that there are only three division R-algebras: the real field R, the complex
field C, and Hamilton’s quaternions H. The irreducible representation V
is a simple module of A ⊗R C where A is a simple subalgebra of RG and
A ∼= Mn(D) where D is one of the three cases above.

Thus, we get a trichotomy of the real behavior of complex representations
based on the division algebra to which they are associated.
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Complex:

• The division algebra corresponding to V is C,

• Frobenius-Schur indicator is ι(V ) = 0,

• V does not have a G-invariant non-degenerate bilinear form,

• χ is not real valued,

• V is not realizable over R, and

• V is not isomorphic to its dual V ∨.

Real:

• The division algebra corresponding to V is R,

• Frobenius-Schur indicator is ι(V ) = 1,

• V has a G-invariant non-degenerate symmetric bilinear form,

• χ is real valued,

• V is realizable over R, and

• V ∼= V ∨.

Quaternionic:

• The division algebra corresponding to V is H,

• Frobenius-Schur indicator is ι(V ) = −1,

• V has a G-invariant non-degenerate skew-symmetric bilinear form,

• χ is real valued,

• V is not realizable over R, but

• V ⊕ V is realizable over R, and

• V ∼= V ∨.
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We merely sketch why the above characterization holds, leaving details
to the reader (or [Ser77, §13.2]). Most of the characterizations follow quickly
from Wedderburn theory, so we focus on the bilinear forms.

Note that bilinear forms are equivalent to maps between V and V ∨, where
non-triviality is equivalent to non-degeneracy by Schur’s Lemma since we
want G-invariance. Schur’s Lemma also tells us G-invariant bilinear forms
are unique up to scaling. The decomposition of a bilinear form into a sym-
metric and skew-symmetric part is G-invariant, so uniqueness up to scaling
implies that the form must be either symmetric or skew-symmetric. Having
a symmetric bilinear form is equivalent to being realizable over the reals by
Theorem 4.3 above.

Finally, we consider the Frobenius-Schur indicator. A G-invariant sym-
metric bilinear form on V is equivalent to having a trivial subrepresentation
of Sym2(V ). Similarly, a G-invariant skew-symmetric bilinear form on V
is equivalent to having a trivial subrepresentation of Alt2(V ). Recall the
formulas for the characters of the symmetric and alternating squares:

χSym2(V ) = χ2
V +Ψ2(χV ) and χAlt2(V ) = χ2

V −Ψ2(χV ).

Thus, we have (1, χSym2(V )) = 1 iff V is real, (1, χAlt2(V )) = 1 iff V is quater-
nionic, and they are 0 otherwise.

Now we simply observe that

χ2
V = χSym2(V ) + χAlt2(V )

and

ι(V ) :=
1

|G|
∑
g∈G

χ(g2) = (1,Ψ2(χV )).
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