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Modern representation theory is usually phrased in the language of non-
commutative rings/algebras and their modules. Until now I’ve avoided this
language so I could focus on the basics. However, the module-theoretic per-
spective is much more versatile — even for finite groups over C. It is much
more urgently needed to discuss representation theory over other fields.

The main object is the group ring ZG or group algebra kG. We will see
that most of the language of representation theory of finite groups can be
efficiently expressed as special cases of module theory over kG. Then we will
use the language to go even further.

Since module theory is part of the standard algebra qual sequence, I will
frequently omit proofs and even many definitions under the assumption that
you should have seen them before. However, the emphasis in qual courses is
usually on commutative rings so some reminders are in order. I recommend
finding a graduate algebra textbook with a good treatment of modules, such
as [DF04, §10] or [Lan02, §III], to refer to if something is unfamiliar.

The “basics” of module-theoretic representation theory is in almost ev-
ery text I’ve referenced, often at a very early stage; see [DF04], [EGH+11],
[FH91], [Lan02] etc. Serre’s book [Ser77], does not use the module-theoretic
perspective at first, but then abruptly changes gears in chapter 6 and as-
sumes you’ve seen Wedderburn theory (developed below). I will also draw
heavily from [AB95, §12,13], [Alp86], and [CR06].

Conventions

Throughout, we assume that all rings and algebras are unital (have an iden-
tity element) but are not necessarily commutative. We will reserve k for
a commutative ring, which will usually be a field or Z. When a ring R is
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commutative, we will typically ignore the distinction between left and right
R-modules and simply call them R-modules.

1 Warm up: Matrix Algebra over a Field

In this section, we consider the particular case of the non-commutative k-
algebra Mn(k) where k is a field. Many of the quirks of non-commutative
rings will show themselves even in this setting.

Example 1.1. The space kn of column vectors is a left Mn(k)-module. The
space (kn)T of row vectors is a right Mn(k)-module. More generally, for an
integer m, the space of n×m-matrices Mn×m(k) is a left Mn(k)-module and
the space of m× n-matrices Mm×n(k) is a right Mn(k)-module.

We will see shortly that the above example has exhibited all isomorphism
classes of finitely-generated left and right Mm×n(k)-modules.

Definition 1.2. Let R be a ring and M a (left or right) R-module. We say
M is simple if M ̸= 0 has no submodules except for 0 and M itself. We
say M is indecomposable if M cannot be written as a direct sum of non-
zero submodules. We say M is semisimple if M is a direct sum of simple
submodules.

From the above example, we see that kn is both simple and indecompos-
able as a left Mn(k)-module. We have a decomposition

Mn×m(k) ∼= (kn)⊕m

as left Mn(k)-modules, so Mn×m(k) is not simple or indecomposable; however,
it is semisimple.

1.1 Ideals

Given a subspace V ⊆ kn, let I be the subset of Mn(k) where every row
is taken from V , and let J be the subset of Mn(k) where every column is
taken from V . Observe that multiplication of I on the left takes each row
to a linear combination of elements of V , so we conclude I is a left ideal.
Similarly, J is a right ideal.

This procedure is invertible. Given a left ideal I of Mn(k), we can recon-
struct the subspace V as the set of rows occurring among the elements of I.
Similarly, for right ideals. We conclude:
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Proposition 1.3. The left (resp. right) ideals of Mn(k) are in canonical
bijective correspondence with the vector subspaces of kn.

Example 1.4. I find the correspondences are somehow easier to understand
via specific examples. Let V be the subspace, I the corresponding left ideal,
and J the corresponding right ideal. The values a, b, c, d, e, f represent arbi-
trary elements of k. In M2(k), we have the example:

V = spank

{(
1
0

)}
I =

{(
a 0
b 0

)}
J =

{(
a b
0 0

)}
In M3(k), we have

V = spank


1
1
0

 ,

0
1
1

 J =


 a b c
a+ d b+ e c+ f
d e f


and I is just the transpose.

Remark 1.5. For those who know some algebraic geometry, the set of sub-
spaces of fixed dimension r in kn is the Grassmannian Gr(n, r). In particular,
the set of subspaces of dimension 1 is the projective space Pn−1. The corre-
spondence above allows us to define Grassmannians and projective spaces as
sets of left ideals of Mn(k). This shift of perspective is useful when we define
more general objects such as Severi-Brauer varieties when the algebra is not
a matrix algebra.

Choosing a basis v1, . . . vm for a subspace V , consider the matrix

MV :=


... · · · ...

... · · · ...
v1 · · · vn 0 · · · 0
... · · · ...

... · · · ...


whose first m columns are the basis vectors v1, . . . , vm and the remaining
columns are 0. We observe that the corresponding right ideal J is generated
by MV . Similarly, I is generated by MT

V .
Recall that an ideal is principal if it is generated by one element. Thus

we have the following:

Corollary 1.6. Every left (resp. right) ideal of Mn(k) is principal.
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Definition 1.7. We say a ring R is simple if its only two-sided ideals are 0
and R itself. We say a ring R is semisimple if it is a product of simple rings.

From the explicit description of left and right ideals of Mn(k), we see
that:

Proposition 1.8. Mn(k) is a simple ring.

Be careful about a possible ambiguity with regard to the word “simple.”
Recall that Mn(k) can also be viewed a left (or right) module over itself. As
a left module, Mn(k) is usually not simple since it has many submodules (left
ideals).

We will see later that a finite-dimensional algebra is semisimple as a ring
if and only if it is semisimple as a (left or right) module, but this is not
obvious: the simple summands are not the same in each context!

1.2 Idempotents

Definition 1.9. Let R be a ring. An element e is an idempotent if e2 = e.
Two idempotents e1, e2 are orthogonal if e1e2 = e2e1 = 0. A primitive idem-
potent is a non-zero idempotent that is not a sum of two non-zero orthogonal
idempotents.

The idempotents of Mn(k) are exactly the (matrices representing) the
projections π : kn → kn. Given an idempotent e ∈ Mn(k) with corresponding
projection πe, we obtain a direct sum decomposition

kn = ker(πe)⊕ im(πe) .

Observe that idempotent 1− e is orthogonal to e and that

ker(π1−e) = im(πe) and im(π1−e) = ker(πe).

Thus, we have a decomposition of vector spaces

kn = e(kn) + (1− e)(kn)

where we warn that e(kn) and (1− e)(kn) are not Mn(k)-modules.
More generally, a set of orthogonal idempotents e1, . . . , er such that 1 =

e1 + . . .+ er gives a decomposition

kn = V1 ⊕ V2 ⊕ · · · ⊕ Vr
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where Vi = im(πi) = ei(k
n) for 1 ≤ i ≤ r.

We see that the primitive idempotents of Mn(k) correspond to the rank
1 projections. Moreover, a maximal set e1, . . . , er of orthogonal primitive
idempotents amounts to a choice of basis for kn.

Example 1.10. Consider the matrix algebra M2(C) and set

a =

(
1 0
0 0

)
, b =

(
0 0
0 1

)
, c =

(
1
2

1
2

1
2

1
2

)
, and d =

(
1
2

−1
2

−1
2

1
2

)
.

Each of a, b, c, d are primitive idempotents. We see that a, b are orthogonal
and c, d are orthogonal. However, a, c are not orthogonal.

Idempotents are a handy language for understanding decompositions of
ideals. If V is the subspace corresponding to a left ideal I, then I = Mn(k)e
where e is the idempotent corresponding to a projection kn → V .

More generally, if e1, . . . , er is a set of orthogonal idempotents satisfying
e1 + · · ·+ er = 1, then

Mn(k) = Mn(k)e1 ⊕ · · · ⊕Mn(k)er

as left Mn(k)-modules and

Mn(k) = e1Mn(k)⊕ · · · ⊕ er Mn(k)

as right Mn(k)-modules. Moreover, we have the decomposition

Mn(k) =
⊕

1≤i,j≤r

ei Mn(k)ej

as k-vector spaces, which can be thought of as a kind of block matrix decom-
position.

Definition 1.11. Let R be a ring. The center of R is the subset

Z(R) := {z ∈ R | rz = zr for all r ∈ R},

which is a commutative subring of R.

Note that Z(Mn(k)) ∼= k is just the set of scalar matrices.
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Definition 1.12. An idempotent e is central if e is contained in the center
Z(R) of R. A primitive central idempotent is a non-zero central idempotent
that is not a sum of two non-zero orthogonal central idempotents.

Warning: a primitive central idempotent is always central but not nec-
essarily primitive! Sometimes the term “centrally primitive” is used instead
of “primitive central,” which is either more or less confusing depending on
which side of the bed you rolled out of that morning.

The matrix algebra Mn(k) has exactly two central idempotents: the zero
matrix and the identity matrix. Only the identity matrix is a primitive
central idempotent. (The identity is not a primitive idempotent unless n =
1.)

Central idempotents are not so interesting for the matrix ring, but they
are interesting for products of rings.

Exercise 1.13. Let R be a ring and suppose e is a central idempotent. Then
eRe is a ring under the same addition and multiplication where e is the
identity. (Note eRe is a subring only eRe when it contains the identity,
which only happens if e = 1.)

Exercise 1.14. Let R be a ring. A decomposition

R = R1 × · · · ×Rn

where R1, . . . , Rn are rings corresponds to a set of orthogonal central idem-
potents e1, . . . , en such that Ri

∼= eiRei for each 1 ≤ i ≤ n.

Exercise 1.15. Let R be a ring and suppose e is a primitive central idem-
potent. Then eRe cannot be written as a product of two non-zero rings.

2 The Group Ring

Definition 2.1. Suppose G is a finite group. The group ring ZG is the free
abelian group on G with multiplication given by(∑

g∈G

agg

)
·

(∑
g∈G

bgg

)
:=
∑
g∈G

∑
h∈G

agbhgh

for integers {ag}g∈G and {bg}g∈G. More generally, given a commutative ring
k, the group algebra kG is the free k-module on G with multiplication as
above.

Last Revised: April 13, 2023 6 of 33



MATH 742 Modules and Wedderburn Theory Spring 2023

One checks immediately that ZG is a non-commutative ring with identity
1 corresponding to the basis element of the identity in G. Similarly, kG is a k-
algebra with identity 1. Since 1 ∈ G corresponds to 1 ∈ ZG, the identification
of the basis of ZG with the elements of G is mostly harmless if G is written
multiplicatively.

Example 2.2. Suppose G = D6 = ⟨s, r | s2, r3, (sr)2⟩ is the dihedral group
of order 6. We have the following computation in ZG:

(3 + 2s+ 5r)(r − sr + 5r2)

=3r − 3sr + 15r2 + 2sr − 2r + 10sr2 + 5r2 − 5s+ 25

=25− 5s+ r + 20r2 − sr + 10sr2

Example 2.3. Let G = ⟨r | rn⟩ be a cyclic group of order n. Thus G has
basis {1, r, r2, . . . , rn−1} where ri · rj = ri+j subject to the relation rn = 1.
In other words, ZG is isomorphic to the ring Z[x]/(xn − 1).

Note that using additive notation Z/nZ for the cyclic group of order n
would be dangerously ambiguous in the example above. For this reason,
we usually use “exponential notation” for group rings of additive groups. If
a+ b = c in an additive group, then we write xaxb = xa+b = xc in the group
ring.

Exercise 2.4. Prove that ZG is commutative if and only G is abelian.

It is useful to write the coefficients of the product as a formula of the
multiplicands. Specifically, if(∑

g∈G

agg

)
·

(∑
g∈G

bgg

)
=
∑
g∈G

cgg

then
cg =

∑
h∈G

ahbh−1g

for every g ∈ G.
SinceG is finite, an equivalent description of ZG is as the set HomSet(G,Z)

of functions from G to Z. However, the ring structure is not the “obvious
one.” The additive structure is indeed pointwise addition, but we use the
convolution product of two functions f1, f2 defined via

(f1 ∗ f2)(g) =
∑
ij=g

f1(i)f2(j)
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for g ∈ G and the indices in the sum i, j vary over all pairs of elements
of G such that ij = g. The isomorphism with ZG is by identifying each
basis element g ∈ ZG with the characteristic function χg in HomSet(G,Z)
satisfying χg(h) = δgh for all h ∈ G.

2.1 Modules of the Group Ring

The relevance of the group ring to group theory is evident from the following
proposition:

Proposition 2.5. Let G be a finite group and k a field. The structure of a
representation of G over the field k is equivalent to the structure of a left kG-
module. Finite-dimensional representations correspond to finitely generated
modules. Moreover, G-equivariant linear transformations are exactly the kG-
module homomorphisms.

Proof. Let M be a left kG-module. In particular, M is a k-vector space. We
construct a linear representation ρ : G→ GL(M) via ρg(m) = gm for g ∈ G
and m ∈ M . Conversely, given a linear representation σ : G → GL(V ), we
endow V with a left kG-module structure via(∑

g∈G

agg

)
v :=

∑
g∈G

agσg(v)

for {ag} from k and v ∈ V . These are mutually inverse operations.
If M is a finitely-generated left kG-module, say by {s1, . . . , sn}, then M

is spanned as a k-vector space by {gsi | g ∈ G, 1 ≤ i ≤ n}. Thus ρ is
a finite-dimensional representation. Conversely, if V is finite-dimensional,
then a basis for V as a k-vector space is a fortiori a generating set for V as
a kG-module.

Finally, we observe that aG-equivariant linear transformation f : (V, ρ) →
(W,σ) of representations are exactly the kG-module homomorphisms under
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the above correspondence. Indeed,

f

((∑
g∈G

cgg

)
v

)

=f

(∑
g∈G

cgρg(v)

)
=
∑
g∈G

cgf (ρg(v))

=
∑
g∈G

cgσg (f(v))

=

(∑
g∈G

cgg

)
f(v)

where we used the fact that f is linear and G-equivariant.

Immediately, we see that subrepresentations correspond to submodules,
quotient representations correspond to quotient modules, and direct sums
correspond to direct sums. However, while V ⊗k W and Homk(V,W ) have
induced kG-module structures, they are not the same as the module-theoretic
constructions V ⊗kG W and HomkG(V,W ) discussed below. Moreover, the
“trivial module” is the zero representation, not the “trivial representation”.

Example 2.6. Every ring is a both a left and right module over itself. The
group algebra kG viewed as a left kG-module corresponds to the regular
representation of G.

Another important subtlety in the above is that the dimension of a rep-
resentation is not in general the same as the minimal number of generators
of the corresponding kG-module.

A left kG-module is indecomposable if it is indecomposable as a repre-
sentation. A left kG-module is simple if and only if it is irreducible as a
representation of G. In particular, irreducible representations can be gener-
ated by one element as a left kG-module (though the converse may not be
true).

Theorem 2.7 (Maschke’s Theorem restated). If G is finite of order coprime
to the characteristic of a field k, then every finitely-generated left kG-module
is semisimple.
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2.2 Center of the Group Ring

The center of a group ring is of special importance. Note that we also have
the notion of the center Z(G) of a group G. Indeed, the group ring of the
center of a group is contained in the center of the group ring; in other words

kZ(G) ⊆ Z(kG).

However, equality holds only when G = Z(G), which is a consequence of the
following result.

Proposition 2.8. The center Z(kG) of the group algebra kG has basis{∑
g∈K

g

∣∣∣∣∣ K ∈ K

}
where K is the set of conjugacy classes of G.

Proof. LetK be a conjugacy class in K. Note that g ∈ K implies hgh−1 ∈ K.
Thus we observe that

h

(∑
g∈K

g

)
=

(∑
g∈K

g

)
h

for all h ∈ H. Conversely, any element x of the group algebra satisfying the
property hx = xh must have the same coefficient on basis elements belonging
to the same conjugacy class.

Example 2.9. Suppose G = D6 = ⟨s, r | s2, r3, (sr)2⟩ is the dihedral group
of order 6. We determine that Z(ZG) has basis

{1, a = s+ sr + sr2, b = r + r2}.

The multiplication table is determined by a few calculations:

a2 = 3 + 3b

ab = ba = 2a

b2 = 2 + b.

Thus, the structure of the center is a bit obscure in this basis.

When k = C the center is especially easy to describe. We will see in
Corollary 2.12 below that Z(CG) ∼= C|K| as C-algebras. However, this is not
at all obvious in the basis described above!
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2.3 Decomposition of the Complex Group Algebra

Let G be a finite group. Let W1, . . . ,Wr be the distinct complex irreducible
representations of G and let n1, . . . , nr be their dimensions.

Theorem 2.10. There is a canonical isomorphism

CG ∼=
r⊕

i=1

EndC(Wi)

of C-algebras.

Proof. If V is a left CG-module and x is an element of kG, then the mul-
tiplication map v 7→ xv is an endomorphism of V . This gives a map from
CG to each EndC(Wi) and we obtain a map to the direct sum. The map is
injective since the action on the regular representation is faithful. Since both
algebras have dimension n2

1 + · · ·+ n2
r, this must be an isomorphism.

Note that for any complex vector space V of dimension n, we have a
(non-canonical) isomorphism End(V ) ∼= Mn(C). Thus, we can rewrite the
theorem above as:

Corollary 2.11. CG ∼=
r⊕

i=1

Mni
(C)

Recall that the center of a matrix algebra Mn(C) is just the subalgebra of
scalar matrices, which is isomorphic to C. In view of Corollary 2.11, therefore
have:

Corollary 2.12. Z(CG) ∼= Cr as C-algebras.

Thus we have two bases of Z(CG): one indexed by conjugacy classes
and one indexed by irreducible representations. The character table of G is
exactly the change of basis matrix between these two bases.

Example 2.13. Let G = Z/3Z be the cyclic group of order 3. Note kG ∼=
k[x]/(x3 − 1) for any field k. We find that RG ∼= R ⊕ C, so the corollary
is more subtle over non-closed fields. Moreover, the element x − 1 in F3G
is nilpotent, so things are potentially much worse when Maschke’s theorem
does not hold.
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2.4 Idempotents of the Group Ring

Earlier in the course, we have seen several examples of projections in EndG
k (V )

for various representations (V, ρ). For example, the projection π : V → V G

onto the invariant subspace has the formula

π(v) =
1

|G|
∑
g∈G

ρg(v)

for v ∈ V . Other examples include the Young projectors, Young symmetriz-
ers, and the projections onto isotypic components. These are all more natu-
rally considered as coming from elements of the group algebra.

Given a representation ρ : G→ GL(V ) and an element

f =
∑
g∈G

cgg

in the group algebra kG, define f̂(ρ) ∈ End(V ) via

f̂(ρ)(v) =
∑
g∈G

cgρg(v)

for all v ∈ V . Thus, the projection π above is simply the endomorphism f̂(ρ)

where f = |G|−1
∑

g∈G g. In practice, we will simply write f instead of f̂(ρ)
since there is rarely danger of confusion.

First, observe that if p ∈ kG is an idempotent, then p̂(ρ) is a projection
for any representation ρ. (The converse is not true, consider the direct sum
of two copies the regular representation and the projection onto a summand.)
Second, if p is a primitive idempotent, then the corresponding projection π on
the regular representation has image an indecomposable subrepresentation.

For the complex group ring, we can even say more.

Proposition 2.14. Let χ1, . . . χr be the irreducible complex characters of G.
The primitive central idempotents of CG are precisely the elements

ei :=
χi(1)

|G|
∑
g∈G

χi(g)g

for each i = 1, . . . , r. If (V, ρ) is a representation of G, then êi(ρ) : V → V
is the projection onto the isotypic component of V corresponding to χi.
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Proof. From the isomorphism

CG ∼=
r⊕

i=1

End(Wi)

we recall that the center is Cr, corresponding to scalar multiplication in
each End(Wi). The central idempotents of CG correspond to the case where
each scalar multiplication is 1 or 0. The primitive central idempotents are
those which are the identity in exactly one End(Wi) and trivial elsewhere.
The explicit formulas for the primitive central idempotents now follow from
the explicit formula for the projection onto the isotypic components of a
representation.

3 Bimodules and Tensor Products

Recall R is a commutative ring, we will often just say R-module without
specifying whether it is left or right.

Definition 3.1. If k is a commutative ring, then we define an k-algebra as
a (not-necessarily commutative) ring R along with a ring homomorphism
π : k → R such that π(k) ⊆ Z(R). An k-algebra homomorphism f : R → S
is simply a ring homomorphism such that πS = f ◦ πR.

Equivalently, an k-algebra is both a k-module and a ring such that the
structures are compatible. Observe that this alternative characterization
breaks down if k is not in the center of the overring R, since it is not clear
whether R should be a left or right R-module. Thus, the restriction to
commutative base rings in the center of the overring is fairly reasonable.

Over non-commutative rings, there are some subtleties to homomorphisms
and tensor products that can be ignored in the commutative setting. Here
we discuss some of these subtleties.

Definition 3.2. Given a ring R, the opposite ring Rop has the same under-
lying abelian group, but the multiplication is in the reverse order; in other
words, a ·op b := ba.

Note that commutative rings are canonically isomorphic to their opposite
rings by the identity map. Since the base ring k of a k-algebra is always
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commutative, the opposite ring of a (possibly non-commutative) k-algebra is
still a k-algebra.

The transpose map A 7→ AT gives a canonical isomorphism of the matrix
ring Mn(k) with its opposite Mn(k)

op. The transpose map g → g−1 gives a
canonical isomorphism of the group ring ZG with its opposite ZGop.

An important example for our purposes shows that we cannot expect
canonical isomorphisms in general:

Example 3.3. Let V be a finite-dimensional vector space with dual V ∨ and
consider the ring End(V ). We have a canonical isomorphism

ψ : End(V )op → End(V ∨)

via ψ(f)(g) := g ◦ f for f ∈ End(V )op and g ∈ V ∨. We obtain a (non-
canonical) isomorphism between End(V )op and End(V ) by way of a choice
of isomorphism V ∼= V ∨.

Despite these example, rings are not necessarily isomorphic to their op-
posite. We will see later that this does not even hold for division rings, which
are important for representation theory. Here is a small, somewhat contrived,
example for the impatient:

Exercise 3.4. Consider the subring R ⊆ M2(Q) given by

R =

{(
a b
0 c

) ∣∣∣∣ a ∈ Z, b ∈ Q, c ∈ Q
}
.

Prove that R is not isomorphic to Rop.

Observe that every left R-module is a right Rop-module via the scalar
multiplication m ·op r := rm. Similarly, every right R-module is a left Rop-
module. In particular, as we have already observer, the distinction between
left and right R-modules is inconsequential precisely when R is commutative.

Definition 3.5. Let R and S be rings. An (R, S)-bimodule M is a left
R-module that is also a right S-module such that (rm)s = r(ms) for all r.

Exercise 3.6. Show that being an (R, S)-bimodule is equivalent to being a
left R× Sop-module, and also to being a right Rop × S-module.

Bimodules are a quite natural object:
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Example 3.7. The ring R is in particular an (R,R)-bimodule.

Example 3.8. Let V and W be k-modules. The set of homomorphisms
Homk(V,W ) is a (Endk(W ),Endk(V ))-bimodule via fgh := f ◦ g ◦ h.

Every left R-module has a canonical structure of a (R,Z)-bimodule; in-
deed even a (R,Z(R))-bimodule where Z(R) is the center of R. Similarly,
every right R-module has a canonical structure of a (Z(R), R)-bimodule.
As a consequence, if R is a k-algebra, then every left or right R-module is
canonically both a left and right k-module.

Definition 3.9. If M and N are left R-modules, then

HomR(M,N) = HomR−mod(M,N)

is the set of left R-module homomorphisms f : M → N . If M and N are
right R-modules, then

Hommod−R(M,N)

is the set of right R-module homomorphisms f :M → N .

Suppose that S and T are rings, M is an (R, S)-bimodule, and N is
an (R, T )-bimodule. Then HomR(M,N) has a (S, T )-bimodule structure
via (sϕt)(m) := ϕ(ms)t for s ∈ S,m ∈ M, t ∈ T . Similarly, if M is an
(S,R)-bimodule and N is a (T,R)-bimodule, then Hommod−R(M,N) has a
(T, S)-bimodule structure.

Thus, when R is commutative, HomR(M,N) has a canonical R-module
structure due to the canonical (R,R)-bimodule structure on M (and N).
More generally, HomR(M,N) has only a Z(R)-module structure. If R is a
k-algebra, then HomR(M,N) is canonically a k-module. At the very least
HomR(M,N) is always an abelian group due to the canonical Z-module struc-
ture.

Example 3.10. Suppose V and W are representations of a finite group G
over a field k. Then

HomkG(V,W ) = HomG
k (V,W )

is the k-vector space of G-equivariant linear transformations f : V → W .
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Definition 3.11. Suppose M is right R-module, N is a left R-module, and
A is an abelian group. A group homomorphism f :M×N → A is R-balanced
if f(mr, n) = f(m, rn) for all r ∈ R, m ∈ M , and n ∈ N . A tensor product
M⊗RN is an abelian group together with aR-balanced group homomorphism
π : M ×N → M ⊗R N such that for any R-balanced group homomorphism
ϕ :M×N → A there exists a unique group homomorphism ψ :M⊗RN → A
such that ϕ = ψ ◦ π.

Once again, we have:

Proposition 3.12. Tensor products exist and are unique up to unique iso-
morphism.

Just like with hom-sets, the tensor product carries additional structures
when the ingredients are bimodules. If M is an (S,R)-bimodule and N is an
(R,U)-bimodule, then M ⊗R N is an (S, U)-bimodule via the multiplication
s(m⊗ n)r := (sm)⊗ (nr) extended by linearity.

Many constructions use the various canonical bimodule structures im-
plicitly. For example, if R is commutative, and M and N are both left
R-modules, then we can use the canonical right R-module structure on M
to make sense of M ⊗R N . Then M ⊗R N has an R-module structure using
either the left R-module structure on M or the right R-module structure on
N (which agree). For annother example, if R is a k-algebra, then M ⊗R N
has a canonical k-module structure.

We are now in a position to state an important result:

Theorem 3.13 (Tensor-Hom Adjunction). Let R, S, U , V be rings. Let
M be an (R, S)-bimodule, N be an (S, U)-bimodule, and P be an (R, V )-
bimodule. Then there is a natural isomorphism

HomR(M ⊗S N,P ) ∼= HomS(N,HomR(M,P ))

of (U, V )-bimodules.

Exercise 3.14. The hom-sets in the statement of the Tensor-Hom Adjunc-
tion use the left module structures on M,N,P etc. Determine the analogous
statement where the hom-sets refer to the right module structures.

Rarely are all bimodule structures needed at once! The most important
special case is when M is an (R, S)-bimodule, N is a left S-module and P is
left R-module; the resulting isomorphism is then just of abelian groups.
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One of the main applications of the Tensor-Hom Adjunction is under-
standing restriction and extension of scalars.

Definition 3.15. Let f : R → S be a ring homomorphism. If N is a left
S-module, then the restriction of scalars of N is the left R-module structure
on N given by r ·R n := f(r)n for r ∈ R and n ∈ N . We often denote
the restriction of scalars by RN orfN to emphasize the distinction with the
original N viewed as a left S-module.

When f is the inclusion of a subring, one can think of the restriction of
scalars as “forgetting” some of the structure of N . For example, a complex
vector space Cn becomes the real vector space R2n under restriction by the
inclusion R → C.

Example 3.16. If H is a subgroup of a group G, the we have an inclusion
kH → kG of group algebras. Let V be a representation of a finite group G
over a field k. Then V has the structure of a left kG-module. The restriction
of scalars kHV is the left kH-module corresponding to ResGH V .

Somewhat trickier is going in the other direction.

Definition 3.17. Let f : R → S be a ring homomorphism and M be an
R-module. Let SR be the corresponding (S,R)-bimodule structure on S and
let RS be the corresponding (R, S)-bimodule structure on S. The extension
of scalars of M is the left S-module SR ⊗RM . The coextension of scalars of
M is the left S-module HomR(RS,M).

Note that the notation SR and RS is usually considered unnecessarily
pedantic. We typically write simply S ⊗R M for extension of scalars and
HomR(S,M) for coextension of scalars. This is usually unambiguous, al-
though perhaps confusing for beginners.

The Tensor-Hom adjunction shows that extension of scalars and restric-
tion of scalars are adjoint. Indeed, viewing S as an (S,R)-bimodule, we have
HomS(S,M) ∼= RM . Thus, the adjunction becomes

HomR(S ⊗R N,M) ∼= HomR(N, RM)

for a left R-module N and a left S-module M .
Once again, these have immediate connections to representation theory:
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Example 3.18. If H is a subgroup of a group G, the we have an inclusion
kH → kG of group algebras. Let W be a representation of a finite group H
over a field k. Then W has the structure of a left kH-module. The extension
of scalars kG⊗kH W is the left kG-module corresponding to IndG

H W .

To see why extension of scalars corresponds to induction, we just need
to recall that we essentially defined induction to be the linear representation
that satisfied (a version of) Frobenius reciprocity. The Tensor-Hom adjunc-
tion gives us an isomorphism of k-vector spaces

HomkG(kG⊗kH W,V ) ∼= HomkH(W, kHV ))

which is exactly the isomorphism

HomG
k (Ind

G
H W,V ) ∼= HomH

k (W,Res
G
H V )

from Frobenius Reciprocity!
We leave it as an exercise to check that coextension of scalars corresponds

to coinduction. Indeed, the distinction is not important (at least in our
setting) in view of the following:

Exercise 3.19. Suppose H is subgroup of finite group G and W is a kH-
module. Prove that

kG⊗kH W ∼= HomkH(kG,W )

as left kG-modules.

4 Wedderburn Decomposition

Throughout this section, k is a field. The main goal of this section is to prove
the following:

Theorem 4.1 (Wedderburn’s Theorem). A finite dimensional k-algebra A
is semisimple if and only if

A ∼=
r⊕

i=1

Mni
(Di)

where D1, . . . , Dr are finite-dimensional k-algebras and n1, . . . , nr are positive
integers.
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Definition 4.2. Let A be a k-algebra andM be a left A-module. A composi-
tion series or simple finite filtration is a descending sequence of submodules

M =M0 ⊋M1 ⊋ · · · ⊋Mr = 0

such that each quotient Mi/Mi+1 is simple. The integer r is the length of
the filtration. The module M is of finite length if it possesses a simple finite
filtration or M = 0.

Theorem 4.3 (Jordan-Hölder). Any two composition series of a left module
M are equivalent: the isomorphism classes of the quotients Mi/Mi+1 are
unique up to reordering.

In view of the Jordan-Hölder theorem, the following notion is well-defined:

Definition 4.4. The length of a module M of finite length is the length of
any composition series (or 0 if M = 0).

Recall that a ring is Artinian (resp. Noetherian) if it satisfies the descend-
ing chain condition (resp. ascending chain condition) on ideals. Similarly, a
module is Artinian (resp. Noetherian) if it satisfies the descending chain con-
dition (resp. ascending chain condition) on submodules. Vector spaces over
a field are in particular, both Artinian and Noetherian so we immediately
have the following.

Proposition 4.5. Suppose A is a finite-dimensional k-algebra, and M is a
finitely generated left A-module. Then A and M are both Noetherian and
Artinian. In particular, we see that M has finite length.

If M is a semisimple left module, then there is a decomposition

M =M1 ⊕ · · · ⊕Mr, (4.1)

where eachMi is a submodule isomorphic to S⊕ai
i , Si is simple, ai is a positive

integer and Si ̸∼= Sj when i ̸= j. Note that the each submodule Mi is canon-
ical, but the isomorphism Mi

∼= S⊕ai
i is not. The submodules M1, . . . ,Mr

are called the isotypic components of M , and (4.1) is called the isotypic
decomposition of M .

Lemma 4.6. Let A be a finite-dimensional k-algebra and M be a finitely
generated left A-module. The following are equivalent:
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(a) every submodule of M is a direct summand,

(b) M is semisimple, and

(c) M is sum of simple submodules (not a priori direct).

Proof. If N1 ⊂ N2 ⊂M is a chain of submodules and N1 is a direct summand
of M then N1 is a direct summand of N2. Thus (a) =⇒ (b) follows by
induction on the dimension ofM , with simple modules as the base case. The
implication (b) =⇒ (c) is immediate. It remains to show (c) =⇒ (a).

Let N be a submodule of M . Let N ′ be the maximal submodule of
M such that N ∩ N ′ = 0 (which exists since M is finite-dimensional). If
N + N ′ = M then we are done, so suppose N + N ′ ⊊ M . Then there is a
simple submodule S ofM not contained in N +N ′; in fact, S∩ (N +N ′) = 0
since it is simple.

In particular, N ′ ⊊ N ′ + S. Consider m ∈ (N ′ + S) ∩ N . We have
m = n + s where and n ∈ N ′ and s ∈ S. The element s = m− n is in both
S and N +N ′, so is trivial. Thus m ∈ N ′ ∩N is itself trivial. We conclude
that (N ′ + S) ∩N is trivial. The module N ′ + S is a counterexample to the
assumption of maximality of N ′.

Lemma 4.7. Submodules and quotient modules of semisimple modules are
semisimple.

Proof. Submodules are semisimple by an argument similar to (1) =⇒ (2)
from Lemma 4.6. Quotient modules are semisimple by Schur’s lemma and
condition (3) from Lemma 4.6.

Recall that an algebra A is semisimple if and only if it is a direct product
of simple rings. We will see that this is equivalent to A being semisimple
as a left module over itself. In the interim, we prove a third equivalent
restatement:

Lemma 4.8. Let A be a finite-dimensional k-algebra. Every finitely gener-
ated left A-module is semisimple if and only if AA is semisimple as a left
A-module over itself.

Proof. Suppose AA is semisimple as a left A-module. Any A-module M can
be written as a quotient of the free A-module An for some positive integer n.
Thus any submodule M is semisimple by Lemma 4.7. The converse follows
a fortiori.
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As a consequence of the previous lemma, along with Jordan-Hölder,
we conclude that a semisimple algebra has only finitely many isomorphism
classes of simple modules!

Lemma 4.9. Let A be a finite-dimensional k-algebra. If A is a simple alge-
bra, then AA is semisimple.

Proof. Let M be the sum of all simple submodules in AA. If S is a simple
submodule in AA and a ∈ A, then the left ideal Sa is either 0 or a simple
submodule of AA. Thus Ma ⊆ M for any a ∈ A. Thus M is a right ideal
of A so, in fact, a two-sided ideal. Since M ̸= 0 and A is simple as a ring,
M = A. So AA is a sum of simple submodules, and thus is semisimple.

Corollary 4.10. Let A be a finite-dimensional k-algebra. If A is a semisim-
ple algebra, then AA is semisimple.

Proof. Let A = A1 ⊕ · · · ⊕ An where each Ai is a simple k-algebra. Ob-
serve that the left A-module structure on AAi factors through the Ai-module
structure. Each Ai is, in particular, a submodule of AA. Since they are
semisimple, so is their sum.

(The converse of the corollary will follow as a consequence of Wedder-
burn’s theorem.)

A proof of the following is left as an exercise:

Lemma 4.11. Let A be a ring. LetM =M1⊕· · ·⊕Mm and N = N1⊕· · ·⊕Nn

be direct sums of A-modules. Then

HomA

(⊕
i

Mi,
⊕
j

Ni

)
∼=
⊕
i,j

HomA(Mi, Nj) .

Lemma 4.12. Let A be a finite-dimensional k-algebra and letM be a semisim-
ple left A-module. Suppose

M =M1 ⊕ · · · ⊕Mr

is the isotypic decomposition where Mi = S⊕ni
i for some simple A-module Si.

There is a canonical isomorphism of k-algebras

EndA(M) ∼= Mn1(EndA(S1))⊕ · · · ⊕Mnr(EndA(Sr)).
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Proof. By Lemma 4.11, we have EndA(N) = HomA(N,N) and EndA(M
⊕n) ∼=

Mn(EndA(N)) for any left A-module N and any positive integer n. Thus,
it suffices to show that HomA(Mi,Mj) = 0 whenever i ̸= j. Note that

Mi = S⊕ni
i and Mj = S

⊕nj

j for integers ni, nj and non-isomorphic simple
modules Si and Sj. Again using the previous lemma, HomA(Mi,Mj) is a
direct sum of modules of the form HomA(Si, Sj). These are 0 by Schur’s
lemma.

Lemma 4.13. Let A be a k-algebra. There is a canonical isomorphism Aop ∼=
EndA(AA) of k-algebras.

Proof. Given an element a ∈ Aop, there is a unique endomorphism ϕa ∈
Aop such that ϕa(1) = a. This gives a correspondence that commutes with
addition and scalar multiplication. Thus there is an isomorphism between
the underlying vector spaces. The computation

(ϕa ◦ ϕb)(1) = ϕa(b) = bϕa(1) = ba

shows that the multiplications agree. Thus the algebras are isomorphic.

One more observation before the main theorem:

Lemma 4.14. For a k-algebra A, there is a k-algebra isomorphism Mn(A)
op ∼=

Mn(A
op).

Proof. Take a matrix to its transpose. This is clearly a vector space isomor-
phism. A short calculation shows that the multiplications are also compati-
ble.

We now prove Wedderburn’s theorem.

Proof of Theorem 4.1. Suppose A is semisimple as a k-algebra. Then AA is
semisimple as a left A-module by Corollary 4.10.

Since AA is semisimple, it has an isotypic decomposition

AA = S⊕n1
1 ⊕ · · · ⊕ S⊕nr

r

where Si are pairwise non-isomorphic simple modules. Let Di = EndA(Si),
which are division algebras by Schur’s Lemma.
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Thus

Aop ∼= EndA(A)
∼= EndA(S

⊕n1
1 )⊕ · · · ⊕ EndA(S

⊕nr
r )

∼= Mn1(D1)⊕ · · · ⊕Mnr(Dr) ,

and applying the last lemma:

A ∼= Mn1(D
op
1 )⊕ · · · ⊕Mnr(D

op
r ) .

We leave the converse as an exercise.

Note that a corollary of the above (one direction of which was used in the
proof) is the following characterization of semisimplicity of an algebra.

Corollary 4.15. Let A be a finite-dimensional k-algebra. The following are
equivalent:

• A is semisimple as a ring (a direct sum of simple rings).

• A is semisimple as a left A-module (a direct sum of simple modules).

• Every finitely generated left A-module is semisimple.

5 Central Simple Algebras

As in the previous section, k is a field. We denote the algebraic closure of
k by k. Some of the results here are elaborated in texts on central simple
algebras and the Brauer group (for example, [GS17] or [Sal99]).

Since a semisimple algebra is a direct sum of simple algebras, we are now
interested in studying simple algebras. The most important invariant of a
simple algebra is its center, which is always a field since otherwise there is a
non-trivial two-sided ideal. This motivates the following definition.

Definition 5.1. A central simple k-algebra is a finite-dimensional k-algebra
A with center Z(A) = k. A central division k-algebra is a finite-dimensional
k-algebra A with center Z(A) = k.

Recall the following, which we proved when we established Schur’s Lemma
in the complex case:
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Proposition 5.2. If k is algebraically closed, then every central division
k-algebra is isomorphic to k.

In view of Wedderburn’s theorem, we have a good description of central
simple algebras and how they relate to the other kinds of algebras we’ve seen.
If A is a finite dimensional k-algebra, then:

1. If A is semisimple, then it is a product of simple k-algebras.

2. If A is simple, then it is a central simple K-algebra, where K is a finite
field extension of k.

3. If A is a central simple k-algebra, then A ∼= Mn(D) where D is a central
division k-algebra.

Central simple algebras and division algebras are closely related. In one
sense, the former can be totally understood in terms of the latter:

Proposition 5.3. If A is a central simple k-algebra, then there is a unique
central division k-algebra D (up to isomorphism) and positive integer n such
that A ∼= Mn(D).

Proof. Suppose A ∼= Mn(D) ∼= Mm(E) for central division k-algebras D and
E. Let L be a minimal left ideal of A. Then D⊕n ∼= L ∼= E⊕m since all the
algebras are simple and have only isomorphism class of simple module. One
may view D⊕n as the set of column vectors with entries in D. Observe that
an endomorphism D⊕n → D⊕n as left A-modules is wholly determined by
the image of the element (1, 0, . . . , 0). One checks that the only permitted
images are of the form (a, 0, . . . , 0) for a ∈ A. Thus EndA(D

⊕n) ∼= D. Thus

D ∼= EndA(D
⊕n) ∼= L ∼= EndA(E

⊕m) ∼= E

and m = n follows by a dimension count.

However, central simple algebras naturally come up in constructions that
are a bit awkward if restricted to division algebras alone.

Lemma 5.4. If A and B are k-algebras, then Z(A⊗k B) = Z(A)⊗k Z(B).
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Proof. Clearly, Z(A)⊗k Z(B) ⊆ Z(A⊗k B). Now, suppose z =
∑

i ai ⊗ bi is
an element of Z(A ⊗k B). We may assume the ai are linearly independent.
Take x ∈ B and observe that

0 = z(1⊗ x)− (1⊗ x)z =
∑
i

ai ⊗ (bix− xbi),

implying that each bix−xbi = 0. Thus each bi ∈ Z(B). Thus z ∈ A⊗kZ(B).
Now, we may assume (after possibly rewriting z) that the bi are linearly
independent in Z(B) and conclude similarly that each ai is in Z(A).

Lemma 5.5. If A is a central simple k-algebra and B is a simple k-algebra,
then A⊗k B is a simple k-algebra.

Proof. Let I be a non-trivial two-sided ideal in A⊗kB. Let r be the minimal
positive integer such that there exists an element x ∈ I that can be written

x =
r∑

i=1

ai ⊗ bi.

Since I is A is simple, Aa1A = A. Thus we have y, z ∈ A⊗ 1 such that

x′ = yxz = 1⊗ b1 +
r∑

i=2

a′i ⊗ bi

for a′i = yaiz, where x
′ ∈ I also. For all w ∈ A, we see that

(w ⊗ 1)x′ − x′(w ⊗ 1) = −
r∑

i=2

(wa′i − a′iw)⊗ bi = 0

by minimality of r. Thus x′ ∈ Z(A)⊗k B = k⊗k B. Thus x′ = 1⊗ b ∈ I for
some b ∈ B. But B is simple, so BbB = B. Thus 1 ⊗ 1 ∈ I. We conclude
that A⊗B = I as desired.

Note that the hypothesis that A is central over k is vital in Lemma 5.5
— consider C⊗R C.

Lemma 5.6. If A is a finite-dimensional central simple k-algebra, then there
is a k-algebra isomorphism A⊗k A

op ∼= Mn(k) for n = dimk(A).
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Proof. By extension by linearity, there is a k-algebra homorphism Ψ : A⊗k

Aop → Endk(A) such that Ψ(x⊗ y)(z) = xzy for x, z ∈ A and y ∈ Aop. The
map is injective since A⊗Aop is simple. Surjectivity follows by a dimension
count.

(In fact, the converse of the previous lemma is also true, but we do not
need this.)

Definition 5.7. Two central simple k-algebras A and B are Brauer equiv-
alent if A ⊗k Mn(k) ∼= B ⊗k Mm(k) for some positive integers m,n. The
Brauer group, denoted Br(k), is the set of Brauer-equivalence classes of cen-
tral simple k-algebras.

From the lemmas above, we have the following:

Proposition 5.8. The Brauer group Br(k) is a group under tensor product of
representatives, with identity the class of matrix algebras Mn(k) and inverse
given by [A] 7→ [Aop].

Equivalently, A and B are Brauer equivalent if A and B are both matrix
rings over the same central division k-algebra. Thus Br(k) can also be viewed
as the set of isomorphism classes of central division k-algebras; however, the
group structure is more obscure with this definition.

Another reason once studies central simple algebras instead of just the
underlying division algebras is that property of being a central simple algebra
is invariant under field extension.

Proposition 5.9. Let A be a finite-dimensional k-algebra. The following are
equivalent:

(a) A is a central simple k-algebra.

(b) A⊗k K is a central simple K-algebra for a field extension K/k.

(c) A ∼= Mn(D) for a central division k-algebra D and some n.

(d) A⊗k k ∼= Mn(k) for some n.

(e) A⊗k K ∼= Mn(K) for a finite field extension K/k and some n.

(f) A⊗k K ∼= Mn(K) for a finite Galois field extension K/k and some n.
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Proof. The equivalence of (e) and (f) boils down to showing that one can
choose a separable field extension. Since we’re mostly working in character-
istic 0, we won’t consider (f) here; see [GS17, Proposition 2.2.5] for a proof.

We begin by establishing (a) =⇒ (b). By Lemma 5.5 we conclude that
A⊗kK is simple since K is simple. The center of A⊗kK is k⊗kK = K by
Lemma 5.4. Thus A⊗k K is a central simple K-algebra as desired.

Let us consider (b) =⇒ (a). If J is a two-sided ideal of A, then J ⊗k K
will be a two-sided ideal of A ⊗k K; thus A is simple. If z is in the center
Z(A), then z ⊗ 1 is in the center of Z(A⊗K). Thus z ∈ K ∩ k = k.

The implication (a) =⇒ (c) we have already seen follows from Wed-
derburn theory. The implication (c) =⇒ (d) follows from Proposition 5.2
using the fact that we have already shown (a) =⇒ (b). The implication (d)
=⇒ (e) follows from the Lefschetz principle: the coefficients in an explicit
isomorphism A⊗k k ∼= Mn(k) must be defined over some finite extension of
k. The implication (e) =⇒ (b) is immediate.

In view of the previous proposition, we may discuss some standard con-
cepts associated to central simple algebras.

Definition 5.10. Let A be a central simple k-algebra. The algebra A is split
if A ∼= Mn(k) for some integer n. A splitting field of A is a field extension
K/k such that A⊗k K ∼= Mn(K).

Note that if V is a k-vector space, then dimk(V ) = dimK(V ⊗k K) for
all field extensions K/k. Thus, the dimension dimk(A) of a central simple k-
algebra A is always a square since A⊗kK ∼= Mn(K) for some field extension
K/k.

Definition 5.11. Let A be a central simple k-algebra. The degree of A is the
unique positive integer deg(A) such that dimk(A) = deg(A)2. The (Schur)
index of A is given by ind(A) = deg(D) where D is the central division
k-algebra such that A ∼= Mn(D).

Proposition 5.12. If A is a central simple k-algebra and M is a simple left
A-module, then dimk(M) = deg(A) ind(A).

Proof. Note A ∼= Mr(D) for a central division k-algebra D. Since M is
simple, we have M ∼= D⊕r. Thus dimk(M) = r deg(D)2 = deg(A) ind(A).
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Let A be a central simple k-algebra with splitting field K and let Ψ : A ↪→
Mn(K) be the embedding obtained by composition with an isomorphism A⊗k

K ∼= Mn(K). Given an element a ∈ A, we define the reduced characteristic
polynomial

PrdA,a(t) := χΨ(a)(t)

where χΨ(a)(t) is the characteristic polynomial of Ψ(a) in Mn(K).

Proposition 5.13. The reduced characteristic polynomial PrdA,a(t) has co-
efficients in k and does not depend on the choice of splitting field K nor the
choice of isomorphism A⊗k K ∼= Mn(K).

Proof. We omit the proof since this is not fundamental to our story.

Writing
PrdA,a(t) = tn − e1t

n−1 + · · ·+ (−1)nen

as a polynomial in k[t], we define the reduced trace TrdA(a) = e1 and reduced
norm NrdA(a) = en.

Proposition 5.14. Let A be a central simple k-algebra. Let χA/k,a(t), TrA/k(a),
and NA/k(a) be the “usual” characteristic polynomial, trace, and norm of a
as an element of the k-algebra A. Then we have

χA,a(t) = Prdn
A,a(t) TrA/k(a) = nTrdA(a) NA/k(a) = (NrdA(a))

n

where n = deg(A).

5.1 Quaternion Algebras

Let k be a field of characteristic ̸= 2. Suppose a, b ∈ k×. LetQa,b be k-algebra
with basis {1, i, j, ij} where the multiplication satisfies

i2 = a, j2 = b, ij = −ij.

The algebraQa,b is a (generalized) quaternion k-algebra. Observe thatQ−1,−1
∼=

H when k = R.
Let K = k(

√
a). We have an injective k-algebra homomorphism Φ :

Qa,b → M2(K) via

x+ yi+ zj + wij 7→
(
x+

√
ay bz + b

√
aw

z −
√
aw x−

√
ay

)
Last Revised: April 13, 2023 28 of 33



MATH 742 Modules and Wedderburn Theory Spring 2023

for x, y, z, w ∈ k. This shows that Qa,b is a central simple k-algebra and K

is a splitting field. Note that k(
√
b) is also a splitting field of Qa,b.

The reduced norm is given by

Nrd(x+ yi+ zj + wij) = x2 − ay2 − bz2 + abw2.

Observe that if q ∈ Qa,b, then Φ(q) is invertible if and only if Nrd(q) ̸= 0. In
this case, the inverse of q is q/Nrd(q) where

q = x− yi− zj − wij

is the conjugate of q. Thus the inverse of q, if it exists in M2(K), is also in
Qa,b.

Proposition 5.15. Let Qa,b be a quaternion k-algebra. The following are
equivalent:

(a) Qa,b is split.

(b) Qa,b is not division k-algebra.

(c) Nrd : Qa,b → k has a non-trivial zero.

(d) ax2 + by2 = 1 has a solution (x, y) over k.

Proof. The equivalence of (a) and (b) follow from Wedderburn’s theorem
since Qa,b =Mn(D) for a division k-algebra D and n can only be 1 or 2. The
equivalence of (b) and (c) follow from the discussion of inverses above. We
see that (d) implies (c) via the element 1− xi− yj.

Now assume (c). If a is a square, then we are already done. Thus,
we may assume k(

√
a)/k is a non-trivial field extension. Then there exist

x, y, z, w ∈ k, not all zero, such that

(x2 − ay2) = b(z2 − aw2).

Observe that N(x + y
√
a) = x2 − ay2 where N : k(

√
a) → k is the usual

norm of the field extension k(
√
a)/k. Thus b = N(x+y

√
a)N(z+w

√
a)−1 =

N(u + v
√
a) for some u, v ∈ k by the multiplicativity of the norm map. In

other words, b = u2 − av2 and so we have a(v/u)2 + b(1/v)2 = 1. Thus
(u/v, 1/v) gives the desired solution establishing (d).
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5.2 Cyclic Algebras

Let L/k be a cyclic Galois extension of degree n, suppose σ is a generator of
Gal(K/k), and suppose b ∈ k. Consider the matrices

Y =


0 0 · · · 0 b
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

. . .
...

0 0 · · · 1 0

 X(ℓ) =


ℓ 0 0 · · · 0
0 σ(ℓ) 0 · · · 0
0 0 σ2(ℓ) · · · 0
...

...
...

. . .
...

0 0 0 · · · σn−1(ℓ)


where ℓ ∈ L. Observe that Y X(ℓ) = X(σ(ℓ))Y , Y n = 1 and X(ℓ) satisfies
the same minimal polynomial as ℓ.

Consider the k-algebra A = A(L, σ, b) generated by X and Y . Such
algebras are called cyclic algebras. Observe that, at least when a is not a
square in k, the quaternion algebras above are special cases with Qa,b

∼=
A(k(

√
a),

√
a 7→ −

√
a, b).

Choose X = X(ℓ) where ℓ is a primitive element of L/k. Observe that
Xn is in the span of the k-linearly independent set {1, X,X2, . . . , Xn−1}. We
see that

{X iY j | 0 ≤ i, j < n}

is a basis for A as a k-vector space. Since dimk A = n2 and we have an
embedding as a k-algebra in Mn(L), we see that every cyclic algebra is a
central simple algebra of degree n.

5.3 Brauer groups over special fields

In general, central simple algebras over arbitrary fields can be quite chal-
lenging to understand. They are absolutely an area of active and ongoing
research. However, in special cases of especial relevance to the representation
theory of finite groups, we can say considerably more. We summarize some
of these now.

First of all, a trivial but important observation:

Proposition 5.16. If k is algebraically closed, then Br(k) = 0. In other
words, every central simple algebra over a finite field is split.

Next, we have the real numbers.
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Theorem 5.17 (Frobenius). The only central division R-algebras are R and
H. In particular, Br(R) = Z/2Z

Also finite fields:

Theorem 5.18 (Wedderburn’s Little Theorem). If k is a finite field, then
Br(k) = 0. In other words, every central simple algebra over a finite field is
split.

Recall that a number field k is a finite extension of Q. Roughly speaking,
everything interesting that happens in the representation theory of finite
groups occurs over number fields. Due to work of Albert-Brauer-Hasse-
Noether, we have a very complete answer in this case. Namely, the con-
struction in the previous section is general enough to capture every example:

Theorem 5.19. Let k be a number field. Every central simple k-algebra is
Brauer-equivalent to a cyclic k-algebra.

In fact, we know even more if one knows some algebraic number theory.
Recall that a number field k has primes which may be “finite” or “infinite.”
To each prime, we have a corresponding local field kp. The prototypical
example is k = Q where the primes p are the usual primes in N along with
the “infinite” real prime ∞. Here Qp is the p-adic field for each finite prime
p, and Q∞ = R.

Theorem 5.20. Let k be a number field with prime p. Then

Br(kp) ∼=


Q/Z if p is finite,
1
2
Z/Z if p is real,

0 if p is complex.

In particular, the theorem above allows us to define the Hasse invariant :

invp : Br(kp) → Q/Z

which is an injective group homomorphism. The notation 1
2
Z/Z for the real

case is meant to emphasize that inv∞([R]) = 1 while inv∞([H]) = 1
2
.

Given a central division algebra A over a number field k and a prime p,
the base extension A ⊗k kp is a central division kp-algebra. Thus, for each
prime p we have a group homomorphism

Br(k) → Br(kp).
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Now we have the following local-to-global principle which completely classi-
fies central division algebras over a number field.

Theorem 5.21. Let k be a number field. There is an exact sequence of
abelian groups

0 → Br(k) →
⊕
p

Br(kp) → Q/Z → 0

where the direct sum is over all primes p of k.
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