Problem 1. Find the maximum and minimum values of $f(x, y) = x^2 + y^2$ subject to the constraint $x^2 + y^2 = 2x + 4y.$

Solution: Rewriting the constraint as $g(x, y) = x^2 + y^2 - 2x - 4y$, we use the technique of Lagrange multipliers. We want to solve the system

$$
2x = \lambda(2x - 2)
$$

\n
$$
2y = \lambda(2y - 4)
$$

\n
$$
0 = x2 + y2 - 2x - 4y.
$$

Observe that $x = 1$ forces $2 = 0$ in the first equation and $y = 2$ forces $4 = 0$ in the second equation; both of which are contradictions. Thus, we may safely divide by $x-1$ and $y-2$. Solving the first two equations for λ , we obtain the equation

$$
\frac{x}{x-1} = \frac{y}{y-2},
$$

which simplifies to $2x = y$. Substituting this into the last equation we obtain $0 = 5x^2 - 10x$. Thus $(x, y) = (0, 0)$ or $(x, y) = (2, 4)$. We have $f(0, 0) = 0$ as our minimum value and $f(2, 4) = 20$ as our maximum value.

Problem 2. Find \int_1^1 $\boldsymbol{0}$ \int_0^2 $\boldsymbol{0}$ \int_0^3 0 $x^2y + z \, dy \, dx \, dz.$

Solution:

$$
\int_0^1 \int_0^2 \int_0^3 x^2 y + z \, dy \, dx \, dz
$$

=
$$
\int_0^1 \int_0^2 \frac{1}{2} x^2 y^2 + yz \Big|_{y=0}^{y=3} dx \, dz
$$

=
$$
\int_0^1 \int_0^2 \frac{9}{2} x^2 + 3z \, dx \, dz
$$

=
$$
\int_0^1 \frac{3}{2} x^3 + 3xz \Big|_{x=0}^{x=2} dz
$$

=
$$
\int_0^1 12 + 6z \, dz
$$

=
$$
12z + 3z^2 \Big|_{z=0}^{z=1} = 15
$$

Problem 3. Find
$$
\int_0^1 \int_y^{y^2} x + 2 \ dx \ dy.
$$

Solution:

$$
\int_0^1 \int_y^{y^2} x + 2 \, dx \, dy
$$

=
$$
\int_0^1 \frac{1}{2} x^2 + 2x \Big|_{x=y}^{x=y^2} dy
$$

=
$$
\int_0^1 \frac{1}{2} y^4 + \frac{3}{2} y^2 - 2y \, dy
$$

=
$$
\frac{1}{10} y^5 + \frac{1}{2} y^3 - y^2 \Big|_{y=0}^{y=1}
$$

=
$$
-\frac{2}{5}
$$

Problem 4. Change the order of integration in

$$
\int_0^2 \int_{x^2}^4 f(x, y) \ dy \ dx.
$$

(This may involve breaking the integral up into multiple integrals.) Solution:

Problem 5. Find \int R x dA where R is the semicircular region given by the inequalities $x^2 + y^2 \le 3$ and $x \geq 0$.

Solution:

 $\sqrt{3}$ + \bar{y}

 $-\sqrt{3}$

Using polar coordinates, the region is given by $r \leq$ √ $\overline{3}$ and $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ $\frac{\pi}{2}$. Since $x = r \cos(\theta)$, we have

$$
\iint_{R} x \, dA = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{3}} (r \cos(\theta)) r \, dr \, d\theta
$$

$$
= \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(\theta) \, d\theta \right) \left(\int_{0}^{\sqrt{3}} r^{2} \, dr \right)
$$

$$
= \left(\sin(\theta) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \right) \left(\frac{1}{3} r^{3} \Big|_{0}^{\sqrt{3}} \right) = 2\sqrt{3}.
$$

Alternatively: The integral can be set up in Cartesian coordinates as either

$$
\iint_{R} x \, dA = \int_{-\sqrt{3}}^{\sqrt{3}} \int_{0}^{\sqrt{3-y^2}} x \, dx \, dy
$$

$$
\iint_{R} x \, dA = \int_{0}^{\sqrt{3}} \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} x \, dy \, dx.
$$

or

Problem 6. Change the order of integration of y and z in

 $x \hspace{1.5cm} 2x$

$$
\int_{1}^{2} \int_{0}^{x} \int_{0}^{2x-2z} f(x, y, z) \ dy \ dz \ dx
$$

(This may involve breaking the integral up into multiple integrals.)

. y

Solution:

 $x\uparrow$ z For fixed x, we are integrating the region to the right of the line $y = 2x - 2z$ in the first quadrant of the yz-plane. Rewriting the equation of the line as $z = x - \frac{y}{2}$ we rewrite the integral as

$$
\int_{1}^{2} \int_{0}^{2x} \int_{0}^{x - \frac{y}{2}} f(x, y, z) \, dz \, dy \, dx
$$

Problem 7. Rewrite the following integral using spherical coordinates

$$
\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} r \ dz \ dr \ d\theta.
$$

(Do not evaluate the integral.)

Solution:

We see that the region is bounded below by the cone $\varphi = \pi/4$ and bounded above by the sphere $\rho = 2$. Since $dV = r dr d\theta dz = \rho^2 \sin(\varphi) d\rho d\varphi d\theta$, the integral can be rewritten

$$
\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 \rho^2 \sin(\varphi) \, d\rho \, d\varphi \, d\theta.
$$

Problem 8. Find the volume of the tetrahedron in the first octant bounded by the coordinate planes and the plane passing through the points $(1, 0, 0)$, $(0, 2, 0)$ and $(0, 0, 1)$.

Solution:

The plane passing through the three given points is

$$
2x + y + 2z = 2,
$$

which can be determined by inspection. (Alternatively, if the points are P , Q , R , then the normal vector can be determined by computing $\overrightarrow{PQ} \times \overrightarrow{PR}$ and then plugging in a point to obtain the constant.)

To find the volume, we will integrate the constant function 1 on the tetrahedron. Thus

$$
V = \int_0^1 \int_0^{2-2z} \int_0^{1-\frac{y}{2}-z} 1 \, dx \, dy \, dz
$$

=
$$
\int_0^1 \int_0^{2-2z} 1 - \frac{y}{2} - z \, dy \, dz
$$

=
$$
\int_0^1 y - \frac{y^2}{4} - yz \Big|_{y=0}^{y=2-2z} dz
$$

=
$$
\int_0^1 (2-2z) - \frac{(2-2z)^2}{4} - (2-2z)z \, dz
$$

=
$$
\int_0^1 z^2 - 2z + 1 \, dz
$$

=
$$
\frac{1}{3}z^3 - z^2 + z \Big|_0^1 = \frac{1}{3}
$$

Problem 9. Find \iiint E z dV where E is the solid region below by the cone $z = \sqrt{x^2 + y^2}$ and above by the paraboloid $z = 2 - x^2 - y^2$

Solution:

1 r 1 2 z

In cylindrical coordinates, $z = r$ is the cone and $z = 2 - r^2$ is the paraboloid. We need to determine where they intersect. This amounts to solving $r = z = 2 - r^2$, which gives the quadratic equation $r^2 + r - 2 = 0$. The roots are $r = -2$ and $r = 1$. Since r is positive, we conclude that the two surfaces meet when $r = 1$.

We can now set up the integral as follows:

$$
\iiint_E z \, dV = \int_0^{2\pi} \int_0^1 \int_r^{2-r^2} (z) r \, dz \, dr \, d\theta
$$

$$
= \left(\int_0^{2\pi} 1 \, d\theta \right) \left(\int_0^1 \frac{z^2}{2} r \Big|_r^{2-r^2} \, dr \right)
$$

$$
= 2\pi \left(\int_0^1 2r - \frac{5}{2} r^3 + \frac{1}{2} r^5 \, dr \right)
$$

$$
= 2\pi \left(r^2 - \frac{5}{8} r^4 + \frac{1}{12} r^6 \Big|_0^1 \right)
$$

$$
= 2\pi \left(1 - \frac{5}{8} + \frac{1}{12} \right) = \frac{11}{12} \pi
$$

Alternatively: The integral can be set up in Cartesian coordinates as

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{2-x^2-y^2} z \, dz \, dy \, dx,
$$

which is a little unpleasant. In spherical coordinates it is

$$
\int_0^{2\pi} \int_0^{\pi/4} \int_0^{f(\varphi)} \rho^3 \cos(\varphi) \sin(\varphi) \, d\rho \, d\varphi \, d\theta,
$$

where $f(\varphi)$ is an unpleasant function involving both radicals and trigonometric functions. It is not practical to solve this problem using spherical coordinates.