University of South Carolina

Midterm Examination 3 October 20, 2016

Math 142 Section H03

Closed book examination

Time: 75 minutes

Name _____

Instructions:

No notes, books, or calculators are allowed. If you need more space than is provided use the back of the previous page and clearly indicate you have done so. Simplify your final answers. **Full credit may not be awarded for insufficient accompanying work.**

1	8
2	8
3	8
4	10
5	8
6	8
Total	50

- 1. (8 points) For each of the following functions:
 - write down the Maclaurin series using Σ notation, and
 - write down their interval of convergence.

(You do not need to justify your answers.)

(a) e^x

(b) $\sin(x)$

(c) $(1+x)^{\frac{1}{3}}$

(d) $\ln(1+x)$

2. (8 points) Determine the Taylor polynomial of order 4 generated by the function $\cos^2(x)$ at $x = \pi$.

3. (8 points) Determine the interval of convergence for the power series

$$\sum_{n=0}^{\infty} \frac{(x-5)^n}{2n+1} \ .$$

4. (10 points)

(a) Using the Taylor polynomial of order 2 generated by the function $f(x) = \sqrt{x}$ at x = 4, estimate the value of $\sqrt{5}$.

(b) What is the maximum value of $|f^{(3)}(x)|$ on the interval [4, 5]?

(c) Find an upper bound on the absolute value of the error for the estimate from (a) using the Remainder Estimation Theorem.

Name: _____

5. (8 points) Find the following:

(a)
$$\lim_{x \to 0} \frac{\tan^{-1}(x) - x}{\sin(x) - x}$$

(b)
$$\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n$$

(c)
$$\sum_{n=0}^{\infty} \frac{4^n}{n!}$$

6. (8 points) Use the Taylor polynomial of order 3 generated by $\sin(x)$ at x = 0 to estimate

$$\int_0^3 \frac{\sin(2x)}{x} \, dx \; .$$