Convergence Tests

Geometric series:

p-series:

 $\sum_{n=0}^{\infty} \frac{1}{n^p} \text{ converges when } p > 1 \text{ and diverges when } p \le 1.$

Divergence test:

If
$$\lim_{n \to \infty} a_n \neq 0$$
 or does not exist, then $\sum_{n=0}^{\infty} a_n$ diverges.

Integral test:

If f is a positive, continuous, decreasing function such that $a_n = f(n)$ for all n, then $\sum_{n=0}^{\infty} a_n$ and $\int_0^{\infty} f(x) dx$ either both converge or both diverge.

Alternating series test:

(Direct) Comparison test:

Limit comparison test:

Ratio test:

Root test:

