Solutions

Problem 1 Determine whether each of the following statements are true or false. No justification is necessary.

- 1. If H is a subgroup of a finite group G, then the order of H divides the order of G.
- 2. Suppose G is a finite group of order n and $x \in G$. Then $x^n = e$.
- 3. Every homomorphism of abelian groups is an isomorphism.
- 4. If G and H are subgroups of the same order, then $G \cong H$.
- 5. If $\varphi: G \to H$ is a group homomorphism, then $\operatorname{im}(\varphi)$ is a subgroup of H.

Solution: 1) True. This is Lagrange's Theorem.

- 2) **True**. The order of every element of G divides the order of G.
- 3) **False**. Consider the zero homomorphism $f : \mathbb{Z}_2 \to \mathbb{Z}_3$ given by f(x) = 0 for all $x \in \mathbb{Z}_2$.
- 4) **False**. Consider $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_4 .
- 5) True. This follows from Theorem 12.6(i) in the textbook.

Problem 2 Let $G = \mathbb{Z}_{30} \times \mathbb{Z}_{10}$ and let $H = \langle (25,5) \rangle$ be a normal subgroup. Determine the order of the group G/H.

Solution: The order of 25 in \mathbb{Z}_{30} is $30/\gcd(25,30) = 6$. The order of 5 in \mathbb{Z}_{10} is $10/\gcd(5,10) = 2$. The order of (25,5) in *G* is the lcm of these orders; thus o(25,5) = 6. Therefore, *H* is a cyclic group of order 6. Since $|G| = |\mathbb{Z}_{30}| \times |\mathbb{Z}_{10}| = 30 \times 10 = 300$, we conclude that G/H has order 300/6 = 50.

Problem 3 Determine the isomorphism classes of finite abelian groups of order 72.

Solution: Observe that $72 = 2^3 \times 3^2$. By the Fundamental Theorem of Abelian groups, we have the possibilities:

$\mathbb{Z}_8 imes \mathbb{Z}_9$	$\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9$	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9$
$\mathbb{Z}_8 imes \mathbb{Z}_3 imes \mathbb{Z}_3$	$\mathbb{Z}_4 imes \mathbb{Z}_2 imes \mathbb{Z}_3 imes \mathbb{Z}_3$	$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_3 imes \mathbb{Z}_3$

Problem 4 Let $\varphi : \mathbb{R} \to \operatorname{GL}_2(\mathbb{R})$ the function given by

$$\varphi(a) := \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}.$$

Prove that φ is a group homomorphism.

Solution: Let $a, b \in \mathbb{R}$. We observe that

$$\psi(a)\psi(b) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} = \psi(a+b).$$

Thus φ is a group homomorphism.

Problem 5 Let $\varphi : G \to H$ be a group homomorphism. Prove that φ is injective if and only if ker $(\varphi) = \{e\}$.

Solution: Suppose φ is injective. Then there is at most one $x \in G$ such that $\varphi(x) = e$. Since $\varphi(e) = e$, we see that $\ker(\varphi) = \{e\}$.

Conversely, suppose ker(φ) = {e}. Suppose $x, y \in G$ and $\varphi(x) = \varphi(y)$. Then $\varphi(x)\varphi(y)^{-1} = e$. Thus $\varphi(xy^{-1}) = e$. Since ker(φ) = {e}, we conclude that $xy^{-1} = e$. Therefore x = y. Thus φ is injective.