You have 50 minutes to complete the exam.

Problem 1 Determine whether each of the following statements are true or false. No justification is necessary.

- 1. If G is finite group with normal subgroup N, then |G| = |G/N||N|.
- 2. If G is a finite group and $x \in G$, then o(x) divides |G|.
- 3. If $\varphi: G \to H$ is a group homomorphism, then $\operatorname{im}(\varphi)$ is a normal subgroup of H.
- 4. Every cyclic group is abelian.
- 5. If a group is not abelian, then it has no normal subgroups.

Problem 2 Let $G = \mathbb{Z}_{12} \times \mathbb{Z}_{12}$ and let $H = \langle (6, 4) \rangle$ be a normal subgroup. Determine the order of the element x = (9, 10) + H in G/H.

Problem 3 Determine all isomorphism classes of finite abelian groups of order 180.

Problem 4 Let G be a group and consider the function $f: G \to G$ given by $f(g) = g^{-1}$. Prove that G is abelian if and only if f is a homomorphism.

Problem 5 Show that if G/Z(G) is cyclic, then G is abelian.