Solutions

Problem 1 Indicate whether the following statements are true or false. You do not need to justify your answers and no partial credit will be awarded.

- 1. Every binary operation is associative.
- 2. If x, y are elements of a group G, and $x = y^{-1}$, then $y = x^{-1}$.
- 3. The set of integers \mathbbm{Z} form a group under multiplication.
- 4. Subtraction is an associative binary operation on \mathbb{Z} .
- 5. If x is an element in a group G of order 1, then x is the identity.

Solution: 1) False. The binary operation of subtraction on \mathbb{Z} is not associative since $(1-1) - 1 \neq 1 - (1-1)$.

2) **True**. This follows from the theorem $(x^{-1})^{-1} = x$ proven in the textbook.

3) False. The binary operation is not cancellative since $0 \cdot 2 = 0 \cdot 3$ but $2 \neq 3$. We have seen that all groups are cancellative.

4) **False**. Consider $(1-1) - 1 \neq 1 - (1-1)$.

5) **True**. If x has order 1, then $x^1 = e$. Since $x^1 = x$, we see x = e.

Problem 2 Find gcd(72, 56) and two integers x, y such that 72x + 56y = gcd(72, 56).

Solution: We apply the Euclidean algorithm for 72 and 56:

72 = 1(56) + 16 56 = 3(16) + 816 = 2(8) + 0

Thus, gcd(72, 56) = 8.

Now we apply the extended Euclidean algorithm to find Bezout coefficients:

$$8 = (1)(56) + (-3)(16)$$

= (1)(56) + (-3)[72 + (-1)(56)]
= (-3)(72) + (4)(56)

Thus x = -3 and y = 4 give a solution to the equation.

Problem 3 Let G be the set of positive integers and consider the binary operation x * y = 2x + 2y on G. Is * associative? Is * commutative? Does (G, *) form a group?

Solution: The operation is *not* associative. Indeed, (2*1)*1 = 6*1 = 14 while 2*(1*1) = 2*4 = 12. However, * is commutative since x*y = 2x + 2y = 2y + 2x = y*x for all positive integers x and y. Since * is not associative, (G, *) is not a group.

<u>Comments</u>: Many students showed that x * (y * z) = 2x + 4y + 4z and (x * y) * z = 4x + 4y + 2zand concluded that this meant G was not associative. *Technically*, we need to verify with a specific counterexample that this isn't somehow an equality for everything in G. (I gave full credit anyway, though.)

Problem 4 Let G be a group. Suppose xyz = yzx for all $x, y, z \in G$. Prove that G is abelian.

Solution: Let $a, b \in G$. Since G is a group, it has an identity element e. The formula we are assuming gives aeb = eba. Simplifying, this is ab = ba, which shows that G is abelian.

<u>Comments</u>: Several students said (something like) every element w of G can be written w = yz for some $y, z \in G$. Thus x(yz) = (yz)x demonstrates xw = wx for all $x, w \in G$. However, you still need to prove that every element of G can be written as a product! To see how this might fail when G is not a group, consider the binary operation of multiplication on the set of even integers E; there is no solution to yz = 2 for $y, z \in E$.

Problem 5 Let n and d be positive integers. Let M be a matrix of order n in the general linear group $\operatorname{GL}(d,\mathbb{R})$. Let M^T denote the transpose matrix of M. Show that M^T is in $\operatorname{GL}(d,\mathbb{R})$ and M^T has order n.

Solution: From linear algebra, we know that M is invertible if and only if M^T is invertible. Since M is invertible, so must be M^T . Thus, M^T is also in $GL(d, \mathbb{R})$.

Another key fact from linear algebra is that for any square matrix A, we have $(A^T)^k = (A^k)^T$ for all positive integers k. If A is a matrix of finite order k, then $A^k = I_d$. Thus $(A^T)^k = (A^k)^T = I_d$ and $o(A^T) \leq o(A)$. Since M has order n, we have $o(M^T) \leq o(M)$. Now $(M^T)^T = M$ and M^T has finite order, so we apply the result again to conclude $o(M) = o((M^T)^T) \leq o(M^T)$. Thus $o(M) = o(M^T)$.

<u>Comments</u>: You can derive the facts we used above using only the definition of the transpose and the fact that $(AB)^T = B^T A^T$. Indeed, even the fact can be proved from the definition without too much trouble. Many students showed that $(M^T)^n = (M^n)^T = I_d$ and then concluded that $o(M^T) = n$ right away. To see why that's not enough, consider the case where you are considering the order of M^2 instead of M^T . It's certainly true that $(M^2)^n = (M^n)^2 = I_d$, but that only tells you that $o(M^2) \leq n$. Indeed, if M has order 2 then it is a strict inequality.