You have 50 minutes to complete the exam.

Problem 1 Determine whether each of the following statements are true or false. No justification is necessary.

1. If (G, *) is a group, then * is associative.

2. $(\mathbb{Z}, +)$ is a group.

- 3. Let (G, *) be a group. If x * y = e, then $y = x^{-1}$.
- 4. A group (G, *) is abelian if and only if * is commutative.
- 5. For positive integers a, b, and n, we have $a \equiv b \mod n$ if and only if a and b have the same remainder modulo n.

Problem 2 Find gcd(210, 45) and two integers x, y such that 210x + 45y = gcd(210, 45).

Problem 3 Let G be the set of positive rational numbers and consider the binary operation $x * y = x^2 + y^2$ on G. Is * associative? Is * commutative? Does (G, *) form a group?

Problem 4 List all elements of \mathbb{Z}_{12} with order exactly 4.

Problem 5 Let G be a group. Prove that G is abelian if and only if $(xy)^2 = x^2y^2$ for all $x, y \in G$.