You have 150 minutes to complete the exam.

Problem 1 Determine whether each of the following statements are true or false. No justification is necessary.

- 1. If a binary operation is associative, then it is also commutative.
- 2. The set \mathbb{R} of real numbers form a group under multiplication.
- 3. If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.
- 4. Let G and H be finite groups. Then $|G \times H| = |G| \times |H|$.
- 5. A permutation in S_n is in the alternating group A_n if and only if it can be written as a product of an even number of transpositions.
- 6. Let H be a subgroup of a group G. The group H is normal in G if and only if $gHg^{-1} = H$ for every $g \in G$.
- 7. If $\varphi: G \to H$ is a group isomorphism, then $o(x) = o(\varphi(x))$ for every $x \in G$.
- 8. For every integer n, there is a unique isomorphism class of finite abelian group of order n.
- 9. Every zero-divisor in a ring also nilpotent.
- 10. Let R be a commutative ring with unity. If I is a maximal ideal in R, then R/I is a field.

Problem 2 Find the last decimal digit of 513^{234} .

Problem 3 Consider the binary operations \oplus and \otimes on \mathbb{R} where $a \oplus b = \min\{a, b\}$ and $a \oplus b = x + y$. Does $(\mathbb{R}, \oplus, \otimes)$ form a ring?

Problem 4 List all subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Problem 5 Rewrite the permutation $\sigma = (145)(2368)(79)$ as a product of transpositions. Is σ even or odd?

Problem 6 Find all the zero-divisors and units in the ring \mathbb{Z}_{12} .

Problem 7 Let G be a group and consider the relation \sim on G where $x \sim y$ whenever x and y have the same order. Show that \sim is an equivalence relation.

Problem 8 Let H and K be subgroups of a finite group G. Prove that, if gcd(|H|, |K|) = 1, then $H \cap K = \{e\}$.

Problem 9 Let G be an abelian group with subgroup H. Prove that G/H is an abelian group.

Problem 10 Let R be a ring with unity and no nonzero zero-divisors. Prove that if $a, b \in R$ satisfy ab = 1, then also ba = 1.