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4.4. Theorem 4.4(iii) gives a formula

o(xm) =
o(x)

gcd(m, o(x))

for x in a group (written using multiplicative notation). The order of 1 in Z30 is 30. Thus, the order of
m = m · 1 in Z30 is 30/ gcd(30,m). We obtain o(3) = 10, o(4) = 15, o(6) = 5, o(7) = 30, and o(18) = 5.

4.5.
Using the formula from the previous problem, we have o(xm) = 18/ gcd(18,m). Thus, o(x2) = 9,

o(x3) = 6, o(x4) = 9, o(x5) = 18, and o(x12) = 3.

4.10.

(a) To check that the binary operation is well-defined, we need to check that a ⊙ b = ab ̸= 0 for all
a, b ∈ {1, . . . , 6}. This occurs only when ab is divisible by 7. Since 7 is prime and each of 1, 2, 3, 4, 5, 6 are
not divisible by 7, ab is never divisible by 7. Thus, the operation is well-defined.

To prove associativity, we need to verify that abc = abc for all a, b, c ∈ G. Note that ab = 7k + ab for

some k ∈ Z. Thus abc = (7k + ab)c = 7kc+ abc. Therefore abc ≡ abc mod 7. Thus abc = abc. Similarly,

abc = abc.
The identity is 1 and we find all inverses explicitly:

1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3, 6−1 = 6.

(b) The group is cyclic with generator 3:

{. . . , 30, 31, 32, 33, 34, 35, . . .} = {1, 3, 2, 6, 4, 5}.

4.13.
Let x be an element of G. Since G is finite, we know that the set ⟨x⟩ = {xn | n ∈ Z} is finite. Thus, by

the Pigeonhole Principle, there exist some j, k ∈ Z such that xj = xk. Thus xj−k = e. We conclude that x
has finite order.

4.17.
Suppose y is another generator of G. Since G = ⟨x⟩, this means that y = xm for some m ∈ Z. Since

G = ⟨y⟩, this means that x = yk for some k ∈ Z. Thus y = xm = (yk)m = ykm. Thus km = 1. The only
integer values for k,m are −1 and 1 as desired.

1 of 2



MATH 546-001 Assignment 3 - Solutions Fall 2024

4.20.
Let b be a conjugate of a. Then b = xax−1. Suppose a has finite order n. Observe that

bn =
(
xax−1

)n
=

(
xax−1

) (
xax−1

)
· · ·

(
xax−1

)︸ ︷︷ ︸
n times

= xa(x−1x)a(x−1x)a · · · a(x−1x)ax−1

= xa(e)a(e)a · · · a(e)ax−1

= x (a · · · a)︸ ︷︷ ︸
n times

x−1

= xanx−1 = xx−1 = e .

Thus, b has finite order less than or equal to n.
We have shown that if b is a conjugate of a and a has finite order n, then o(b) ≤ o(a). Observe that

a = x−1bx, so a is a conjugate of b. Thus o(a) ≤ o(b) if b has finite order. Thus, they are either both of
infinite order or they both have finite order and o(a) = o(b).

4.21.
Suppose xy has finite order n. This means that e = (xy)n. Multiplying on the left by y and the right

by y−1 we obtain yey−1 = y(xy)ny−1. Thus

e = y (xy) (xy) · · · (xy) (xy)︸ ︷︷ ︸
n times

y−1

= y (xy) (xy) · · · (xy)︸ ︷︷ ︸
n−1 times

x

= (yx) (yx) · · · (yx)︸ ︷︷ ︸
n−1 times

yx

= (yx)n

We conclude that, if xy has finite order, then o(yx) ≤ o(xy). Replacing the roles of x and y, if yx has
finite order, then o(xy) ≤ o(yx). Thus, they are either both of infinite order or they both have finite order
and o(xy) = o(yx).
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