2.4	•	
a)		
	\oplus	0
	0	0
	1	1
	$\frac{2}{3}$	2
	3	3
b)		

	0	0	1	2	3		
	1	1	2	3	0		
	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	3	0	1		
	3	3	0	1	2		
b)							
-	\oplus	0	1	2	3	4	
	0	0	1	2	3	4	
	1	1	2	3	4	0	
	$2 \\ 3 \\ 4$	1 2 3 4	3	4	0	1	
	3	3	4	0	1	2	
	4	4	0	1	2	3	
c)							
	\oplus	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	2	3	4	5	0
	$\frac{2}{3}$	1 2 3	3	4	5	0	1
			4	5	0	1	2
	4	4	5	0	1	2	3
	5	5	0	1	2	3	4

 $1 \ 2 \ 3$

2.6. No, (S, *) is not a group. Observe that (b * c) * c = c * c = a while b * (c * c) = b * a = b. Thus * is not associative.

2.10. First we verify the multiplication is well-defined. For $a, b, c, d \in \mathbb{R}$ we compute

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac - bd \end{pmatrix}.$$

If we assume $a^2 + b^2 \neq 0$ and $c^2 + d^2 \neq 0$, then

$$(ac - bd)^{2} + (ad + bc)^{2} = a^{2}c^{2} - 2abcd + b^{2}d^{2} + a^{2}d^{2} + 2abcd + b^{2}c^{2} = (a^{2} + b^{2})(c^{2} + d^{2}) \neq 0.$$

Thus matrix multiplication gives a well-defined binary operation on G.

We know that multiplication is associative for all matrices, so the restriction to G must also be associative.

The identity matrix is an identity for G.

Observe that

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot \begin{pmatrix} \frac{a}{a^2+b^2} & \frac{-b}{a^2+b^2} \\ \frac{b}{a^2+b^2} & \frac{a}{a^2+b^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{a}{a^2+b^2} & \frac{-b}{a^2+b^2} \\ \frac{b}{a^2+b^2} & \frac{a}{a^2+b^2} \end{pmatrix} \cdot \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

so every element of G has an inverse in G.

Alternative: Some of the computations above can be avoided by observing that a^2+b^2 is the determinant of the matrix.

3.1. Observe that 10 is the inverse to 2 and 5 is the inverse to 7 in $(\mathbb{Z}_{12}, \oplus)$. Thus

$$2 \oplus x \oplus 7 = 1$$

$$10 \oplus 2 \oplus x \oplus 7 = 10 \oplus 1$$

$$x \oplus 7 = 11$$

$$x \oplus 7 \oplus 5 = 11 \oplus 5$$

$$x = 4$$

3.2. Note that A△A = Ø. Thus A△x = B iff A△A△x = A△B iff x = A△B. Thus x = {1,2,5,6,7,8}.
3.5. (x * y * z)⁻¹ = (y * z)⁻¹ * x⁻¹ = z⁻¹ * y⁻¹ * x⁻¹
3.11. Let a, b ∈ G. We know a * a = e, b * b = e, and (a * b) * (a * b) = e. Thus

$$a * b * a * b = e$$
$$a * (a * b * a * b) = a * e$$
$$b * a * b = a$$
$$(b * a * b) * b = a * b$$
$$b * a = a * b.$$

Thus (G, *) is abelian.

3.12. Since cancellation laws hold, the following are equivalences:

$$(x * y)^2 = x^2 * y^2$$
$$x * y * x * y = x * x * y * y$$
$$y * x * y = x * y * y$$
$$y * x = x * y * y$$
$$y * x = x * y.$$

Thus (G, *) is abelian.