Problem A. Let $T: V \to W$ be a linear transformation from a vector space V to a vector space W. Prove that the range of T is a subspace of W.

Solution. Let U be the range of T. We check the properties given in the definition of being a subspace. First, we observe that T(0) = 0 so $0 \in W$. Second, if $u, v \in U$, then there exist $x, y \in V$ such that u = T(x) and v = T(y). Thus u + v = T(x) + T(y) = T(x + y) is in the range of T. Finally, if $c \in \mathbb{R}$, then cu = cT(x) = T(cx) is in the range of T. We conclude that U is a subspace.

Problem B. Let $T: V \to W$ be a linear transformation from a vector space V to a vector space W. Suppose v_1, \ldots, v_p is a linearly independent set in V. Prove that, if T is injective, then $T(v_1), \ldots, T(v_p)$ is linearly independent.

<u>Solution.</u> We prove that contrapositive. Suppose $T(v_1), \ldots, T(v_p)$ is linearly dependent. Then there exist weights c_1, \ldots, c_p , not all zero, such that

$$c_1T(v_1) + \dots + c_pT(v_p) = 0.$$

By linearity, this means

$$T(c_1v_1 + \dots + c_pv_p) = 0.$$

Since T is injective, this means

$$c_1v_1+\cdots+c_pv_p=0.$$

This means v_1, \ldots, v_p is linearly dependent.

Problem C. Let $T: V \to W$ be a linear transformation from a vector space V to a vector space W. Suppose v_1, \ldots, v_p spans V. Prove that, if T is surjective, then $T(v_1), \ldots, T(v_p)$ spans W.

Solution. Consider some $w \in W$. Since T is surjective, there exists a $v \in V$ such that w = T(v). Since v_1, \ldots, v_p span V, there exist weights c_1, \ldots, c_p such that

$$v = \sum_{i=1}^{p} c_i v_i .$$

Thus

$$w = T(v) = T(\sum_{i=1}^{p} c_i v_i) = \sum_{i=1}^{p} c_i T(v_i).$$

We conclude that w is a linear combination of $T(v_1), \ldots, T(v_p)$. Since w was arbitrary, they form a spanning set for W as desired.