Problem A. Let *m* and *b* be real numbers. Let $f : \mathbb{R}^1 \to \mathbb{R}^1$ be the function given by f(x) = mx + b. Prove that *f* is a linear transformation if and only if b = 0.

Solution.

Suppose f is a linear transformation. Then f(2) = 2f(1). Since f(2) = 2m + b and f(1) = m + b, we have 2m + b = 2(m + b), which simplifies to b = 0 as desired.

Now suppose that b = 0. For any $u, v \in \mathbb{R}^1$, we have

$$f(u+v) = m(u+v) = mu + mv = f(u) = f(v).$$

For any $u \in \mathbb{R}^1$ and $c \in \mathbb{R}$, we have

$$f(cu) = m(cu) = c(mu) = cf(u).$$

Thus, by the definition, f is a linear transformation.

Problem B. Let X, Y, Z be sets and let $f : X \to Y$ and $g : Y \to Z$ be functions. Prove that if $g \circ f$ is injective, then f is injective.

Solution.

Suppose $g \circ f$ is injective. This means that for every $z \in Z$, there is at most one $x \in X$ such that $(g \circ f)(x) = z$. Consider $y \in Y$. Suppose $x, x' \in X$ are elements such that f(x) = y = f(x'). Applying g, we see that g(f(x)) = g(f(x')). Since $(g \circ f)$ is injective, this means that x = x'. Therefore there is at most one $x \in X$ such that f(x) = y. Therefore, f is injective.