$\frac{\text{Solution.}}{\text{We have}}$

$$(a+b)(\mathbf{u}+\mathbf{v}) = (a+b)\mathbf{u} + (a+b)\mathbf{v}$$

by Property (v) from page 53 of the text. Then, we have

$$(a+b)\mathbf{u} + (a+b)\mathbf{v} = a\mathbf{u} + b\mathbf{u} + a\mathbf{v} + b\mathbf{v}$$

by two applications of property (vi) from page 53 of the text.

Problem B. Prove that $\text{Span}(X \cap Y) \subseteq \text{Span}(X) \cap \text{Span}(Y)$.

Solution.

Suppose **v** is an element of $\text{Span}(X \cap Y)$. By definition, this means that **v** is a linear combination of elements of $X \cap Y$. This means that

$$\mathbf{v} = \sum_{\mathbf{w} \in X \cap Y} c_{\mathbf{w}} \mathbf{w}$$

where each $c_{\mathbf{w}}$ is a real number. Observe that

$$\mathbf{v} = \sum_{\mathbf{w} \in X \cap Y} c_{\mathbf{w}} \mathbf{w} + \sum_{\mathbf{w} \in X \setminus Y} 0 \mathbf{w},$$

so **v** is a linear combination of the elements in X. Thus $\mathbf{v} \in \text{Span}(X)$. Similarly,

$$\mathbf{v} = \sum_{\mathbf{w} \in X \cap Y} c_{\mathbf{w}} \mathbf{w} + \sum_{\mathbf{w} \in Y \setminus X} 0 \mathbf{w},$$

so $\mathbf{v} \in \text{Span}(Y)$. We conclude that $\mathbf{v} \in \text{Span}(X) \cap \text{Span}(Y)$.