Problem 1
Prove that \[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots \frac{1}{(n-1) \cdot n} = 1 - \frac{1}{n}\] for every integer \(n \ge 2\).
Solution
We will prove that \[\sum_{k=2}^n \frac{1}{(k-1)k}=1 - \frac{1}{n}\] for mathematical induction on \(n\). For the basis step, we observe that \[\frac{1}{1 \cdot 2} = \frac{1}{2} = 1 - \frac{1}{1\cdot 2}\] so the statement holds when \(n=2\). For the induction step, we assume that \[\sum_{k=2}^n \frac{1}{(k-1)k}=1 - \frac{1}{n}\] for some integer \(n \ge 2\). Now \[\begin{align*} {}&\sum_{k=2}^{n+1} \frac{1}{(k-1)k}\\ =&\left(\sum_{k=2}^n \frac{1}{(k-1)k}\right) + \frac{1}{n(n+1)}. \end{align*}\] Applying the induction hypothesis, we continue: \[\begin{align*} =&\left(1 - \frac{1}{n}\right) + \frac{1}{n(n+1)}\\ =&1 - \frac{n+1}{n(n+1)} + \frac{1}{n(n+1)}\\ =&1 - \frac{n+1-1}{n(n+1)}\\ =&1 - \frac{1}{(n+1)}. \end{align*}\] Thus, the desired statement follows by induction.