Due: Thursday, March 29, 2018

Read $\S3.1 - 3.5$ from the text.

Problem 1 (c.f. 3.1.2) Consider the system of equations

$$x^2 + 2y^2 = 3$$
$$x^2 + xy + y^2 = 3$$

- (a) If I is the ideal generated by these equations, then find $I \cap k[x]$ and $I \cap k[y]$.
- (b) Find all complex solutions of these equations.
- (c) Find all rational solutions of these equations.

Problem 2 (c.f. 3.1.4) Find bases for the elimination ideals I_1 and I_2 for the ideal I determined by the equations

$$x^{2} + y^{2} + z^{2} = 4$$
$$x^{2} + 2y^{2} = 5$$
$$xz = 1$$

How many rational solutions are there?

Problem 3 (c.f. 3.1.9) Consider the system of equations given by

$$x^{5} + \frac{1}{x^{5}} = y$$
$$x + \frac{1}{x} = z$$

Let I be the ideal in $\mathbb{C}[x, y, z]$ determined by these equations.

- (a) Find a basis of $I_1 \subseteq \mathbb{C}[y, z]$ and show that $I_2 = \{0\}$.
- (b) Use the extension to prove that each partial solution $c \in \mathbf{V}(I_2) = \mathbb{C}$ extends to a solution in $\mathbf{V}(I) \subseteq \mathbb{C}^3$.
- (c) Which partial solutions $(b,c) \in \mathbf{V}(I_1) \subseteq \mathbb{R}^2$ extend to solutions in $\mathbf{V}(I) \subseteq \mathbb{R}^3$?

Problem 4 (c.f. 3.2.4) To see how the Closure Theorem can fail over \mathbb{R} , consider the ideal $I = \langle x^2 + y^2 + z^2 + 2, 3x^2 + 4y^2 + 4z^2 + 5 \rangle$.

Let $V = \mathbf{V}(I)$, and let π_1 be the projection taking (x, y, z) to (y, z).

(a) Working over \mathbb{C} , prove that $\mathbf{V}(I_1) = \pi_1(V)$.

(b) Working over \mathbb{R} , prove that $V = \emptyset$ and that $\mathbf{V}(I_1)$ is infinite.

Problem 5 (c.f. 3.3.7) Let S be the parametric surface

$$x = uv$$
, $y = uv^2$, $z = u^2$.

- (a) Find the equation of the smallest variety V that contains S.
- (b) Over \mathbb{C} , determine exactly which points of V are not on S.

Problem 6 (c.f. 3.3.9) The Whitney umbrella surface S is given parametrically by

$$x = uv, \quad y = v, \quad z = u^2$$
.

- (a) Find the equation of the smallest variety V containing the Whitney umbrella.
- (b) Show that V = S over the \mathbb{C} , but not over \mathbb{R} .
- (c) Show that the parameters u and v are not always uniquely determined by x, y, z.

Problem 7 (c.f. 3.3.11) Prove Theorem 2 from §3.3 in the text. (Hint: the proof is outlined in the text and suggestions for filling in the details can be found in Exercise 11 from §3.3.)

Problem 8 (c.f. 3.4.8)

- (a) Show that (0,0) is the only singular point of $y^2 = x^3$.
- (b) Find all singular points of the curve $y^2 = cx^2 x^3$ for all values of c.
- (c) Find all singular points of the curve $x^2 + y^2 = c$ for all values of c.

Bonus Problem 1 Recall that a *Pythagorean triple* is a triple of positive integers (a, b, c) such that $a^2 + b^2 = c^2$. A triple is *primitive* if gcd(a, b, c) = 1.

- (a) Find a bijection between primitive Pythagorean triples and rational solutions to the equation $x^2 + y^2 = 1$ where x > 0 and y > 0.
- (b) Show the rational parametrization

$$x = \frac{2t}{1+t^2}, \quad y = \frac{1-t^2}{1+t^2}$$

is a curve whose Zariski closure is the unit circle $C = \mathbf{V}(x^2 + y^2 - 1)$.

- (c) Show that there is exactly one point p in $\mathbf{V}(x^2 + y^2 1)$ that is not contained in the parametrization.
- (d) Show that every rational point on $C \setminus \{p\}$ is the image of exactly one value $t \in \mathbb{Q}$.
- (e) Find a bijection between primitive Pythagorean triples and the set of rational numbers 0 < r < 1.

Bonus Problem 2 (c.f. 3.4.12) Consider a surface $V(f) \subset k^3$ defined by $f \in k[x, y, z]$.

- (a) Define what it means for $(a, b, c) \in \mathbf{V}(f)$ to be a singular point.
- (b) Determine all singular points of the sphere $x^2 + y^2 + z^2 = 1$.
- (c) Determine all singular points on the surface $V(x^2 y^2 z + z^3)$.