Due: Thursday, February 15, 2018

Read §2.1–2.4 from the text.

You do not need to use a computer algebra system to do these problems. Make sure your solutions can be checked by hand.

Problem 1 (c.f. 2.1.1) For each of the following, determine whether $f \in \mathbb{R}[x]$ is contained in the ideal $I \subseteq \mathbb{R}[x]$.

(a) $f = x^2 - 3x + 2$, $I = \langle x - 2 \rangle$. (b) $f = x^5 - 4x + 1$, $I = \langle x^3 - x^2 + x \rangle$. (c) $f = x^2 - 4x + 4$, $I = \langle x^4 - 6x^2 + 12x - 8, 2x^3 - 10x^2 + 16x - 8 \rangle$. (d) $f = x^3 - 1$, $I = \langle x^9 - 1, x^5 + x^3 - x^2 - 1 \rangle$.

Problem 2 (c.f. 2.2.1, 2.2.3) Rewrite each of the following polynomials in lex, grlex, and grevlex order. Then repeat with the variables ordered $z > y > x$ instead. (There are 6) rewrites for each polynomial.)

- (a) $f(x, y, z) = 2x + 3y + z + x^2 z^2 + x^3$.
- (b) $f(x, y, z) = 2x^2y^8 3x^5yz^4 + xyz^3 xy^4$.

Problem 3 (c.f. 2.2.11) Let $>$ be a monomial order on $k[x_1, \ldots, x_n]$.

- (a) Suppose $f \in k[x_1, \ldots, x_n]$ is nonzero and m is a nonzero monomial. Show that $LT(m \cdot f) = m \cdot LT(f).$
- (b) Suppose $f, g \in k[x_1, \ldots, x_n]$ are nonzero. Is it true that $LT(fg) = LT(f)LT(g)$? If so, prove it; otherwise, find a counterexample.
- (c) Suppose $f_1, \ldots, f_s, g_1, \ldots, g_s \in k[x_1, \ldots, x_n]$ and $\sum_{i=1}^s f_ig_i$ are all non-zero. Is it true that $LT(\sum_{i=1}^s f_i g_i)$ is equal to $LT(f_i) LT(g_i)$ for some i? If so, prove it; otherwise, find a counterexample.

Problem 4 (c.f. 2.2.12) Prove Lemma 2.2.8 from the text.

Problem 5 (c.f. 2.3.1) Compute the remainder on division of $f = x^3y^2 + xy^3 - y + 1$ by the ordered set $F = (xy^2 - x, x - y^3)$ using both the lex and griex monomial orders.

Problem 6 (c.f. 2.3.2) Compute the remainder on division of $f = xy - 2yz$ by the ordered set $(x - y^2, y - z^3, z^2 - 1)$ using to the lex monomial order.

Problem 7 (c.f. 2.4.10) Let $\mathbf{u} = (u_1, \ldots, u_n)$ be a vector in \mathbb{R}^n such that u_1, \ldots, u_n are positive and linearly independent over \mathbb{Q} . For $\alpha, \beta \in \mathbb{N}^n$, define

$$
\alpha >_{\mathbf{u}} \beta \text{ iff } \mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta
$$

where the dot is the usual dot product of vectors. Prove that $>_{u}$ is a monomial order.

Problem 8 (c.f. 2.4.11) Let $\mathbf{u} = (u_1, \dots, u_n)$ be in \mathbb{N}^n , and fix a monomial order $>_{\sigma}$ on \mathbb{N}^n . For $\alpha, \beta \in \mathbb{N}^n$, define $\alpha >_{\mathbf{u},\sigma} \beta$ if and only if $\mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta$ or $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$ and $\alpha >_{\sigma} \beta$.

- (a) Prove that $>_{\mathbf{u},\sigma}$ is a monomial order.
- (b) Find $\mathbf{u} \in \mathbb{N}^n$ so that $>_{\mathbf{u},lex}$ is the grlex order $>_{grlex}$.
- (c) Note that $>_{\sigma}$ is used break ties. Prove that, if $n \geq 2$, then for all $\mathbf{u} \in \mathbb{N}^n$ there exist $\alpha, \beta \in \mathbb{N}^n$ such that $\alpha \neq \beta$ but $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$.

Problem 9 (Bonus) The previous two problems give examples of *weight orders*, which we now define in general. Given a sequence S of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{N}^n$, define an order $\gt_S \beta$ as follows. If $\alpha \cdot \mathbf{u}_1 > \beta \cdot \mathbf{u}_1$, then $\alpha \gt_S \beta$; if $\alpha \cdot \mathbf{u}_1 < \beta \cdot \mathbf{u}_1$, then $\alpha \lt_S \beta$; otherwise, we must have $\alpha \cdot \mathbf{u}_1 = \beta \cdot \mathbf{u}_1$. In that case, we now compare $\alpha \cdot \mathbf{u}_2$ and $\beta \cdot \mathbf{u}_2$ similarly. If it is still a tie, we use \mathbf{u}_3 and so on.

For certain sequences S, the resulting relation \gt_S is a monomial order. In fact, every monomial order can be described in this way (we won't prove this).

- (a) Show that lex, grlex, and grevlex are weight orders by explicitly describing appropriate sequences S of vectors in \mathbb{R}^n .
- (b) Find examples of sequences S such that \gt s is not a monomial order.