
MATH 148 Problem Set 2 Spring 2018

Due: Thursday, February 15, 2018

Read §2.1–2.4 from the text.

You do not need to use a computer algebra system to do these problems. Make
sure your solutions can be checked by hand.

Problem 1 (c.f. 2.1.1) For each of the following, determine whether f ∈ R[x] is contained
in the ideal I ⊆ R[x].

(a) f = x2 − 3x+ 2, I = 〈x− 2〉.
(b) f = x5 − 4x+ 1, I = 〈x3 − x2 + x〉.
(c) f = x2 − 4x+ 4, I = 〈x4 − 6x2 + 12x− 8, 2x3 − 10x2 + 16x− 8〉.
(d) f = x3 − 1, I = 〈x9 − 1, x5 + x3 − x2 − 1〉.

Problem 2 (c.f. 2.2.1, 2.2.3) Rewrite each of the following polynomials in lex, grlex, and
grevlex order. Then repeat with the variables ordered z > y > x instead. (There are 6
rewrites for each polynomial.)

(a) f(x, y, z) = 2x+ 3y + z + x2 − z2 + x3.
(b) f(x, y, z) = 2x2y8 − 3x5yz4 + xyz3 − xy4.

Problem 3 (c.f. 2.2.11) Let > be a monomial order on k[x1, . . . , xn].

(a) Suppose f ∈ k[x1, . . . , xn] is nonzero and m is a nonzero monomial. Show that
LT(m · f) = m · LT(f).

(b) Suppose f, g ∈ k[x1, . . . , xn] are nonzero. Is it true that LT(fg) = LT(f) LT(g)? If
so, prove it; otherwise, find a counterexample.

(c) Suppose f1, . . . , fs, g1, . . . gs ∈ k[x1, . . . , xn] and
∑s

i=1 figi are all non-zero. Is it true
that LT(

∑s
i=1 figi) is equal to LT(fi) LT(gi) for some i? If so, prove it; otherwise,

find a counterexample.

Problem 4 (c.f. 2.2.12) Prove Lemma 2.2.8 from the text.

Problem 5 (c.f. 2.3.1) Compute the remainder on division of f = x3y2 + xy3 − y + 1 by
the ordered set F = (xy2 − x, x− y3) using both the lex and grlex monomial orders.

Problem 6 (c.f. 2.3.2) Compute the remainder on division of f = xy− 2yz by the ordered
set (x− y2, y − z3, z2 − 1) using to the lex monomial order.
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Problem 7 (c.f. 2.4.10) Let u = (u1, . . . , un) be a vector in Rn such that u1, . . . , un are
positive and linearly independent over Q. For α, β ∈ Nn, define

α >u β iff u · α > u · β
where the dot is the usual dot product of vectors. Prove that >u is a monomial order.

Problem 8 (c.f. 2.4.11) Let u = (u1, . . . , un) be in Nn, and fix a monomial order >σ on
Nn. For α, β ∈ Nn, define α >u,σ β if and only if u · α > u · β or u · α = u · β and α >σ β.

(a) Prove that >u,σ is a monomial order.
(b) Find u ∈ Nn so that >u,lex is the grlex order >grlex.
(c) Note that >σ is used break ties. Prove that, if n ≥ 2, then for all u ∈ Nn there exist

α, β ∈ Nn such that α 6= β but u · α = u · β.

Problem 9 (Bonus) The previous two problems give examples of weight orders, which we
now define in general. Given a sequence S of vectors u1, . . . ,uk ∈ Rn and α, β ∈ Nn, define
an order >S β as follows. If α · u1 > β · u1, then α >S β; if α · u1 < β · u1, then α <S β;
otherwise, we must have α · u1 = β · u1. In that case, we now compare α · u2 and β · u2

similarly. If it is still a tie, we use u3 and so on.
For certain sequences S, the resulting relation >S is a monomial order. In fact, every

monomial order can be described in this way (we won’t prove this).

(a) Show that lex, grlex, and grevlex are weight orders by explicitly describing appropri-
ate sequences S of vectors in Rn.

(b) Find examples of sequences S such that >S is not a monomial order.
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